scholarly journals Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to continental US

2017 ◽  
Author(s):  
Shupeng Zhu ◽  
Jeremy R. Horne ◽  
Julia Montoya-Aguilera ◽  
Mallory L. Hinks ◽  
Sergey A. Nizkorodov ◽  
...  

Abstract. Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOA). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOC). This chemistry can reduce gas-phase NH3 concentration and therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM). In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10−3–10−5). Simulation results indicate that a significant reduction in gas-phase ammonia is possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter, and 67.0 % in the summer with the highest uptake coefficient (10−3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased production of biogenic SOA production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. While ammonia emissions expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.

2018 ◽  
Vol 18 (5) ◽  
pp. 3641-3657 ◽  
Author(s):  
Shupeng Zhu ◽  
Jeremy R. Horne ◽  
Julia Montoya-Aguilera ◽  
Mallory L. Hinks ◽  
Sergey A. Nizkorodov ◽  
...  

Abstract. Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs). This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM) as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10−3–10−5). Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10−3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA) production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.


2020 ◽  
Author(s):  
Chinmay Jena ◽  
Sachin D. Ghude ◽  
Rachana Kulkarni ◽  
Sreyashi Debnath ◽  
Rajesh Kumar ◽  
...  

Abstract. Elevated levels of fine particulate matter (PM2.5) during winter-time have become one of the most important environmental concerns over the Indo-Gangetic Plain (IGP) region of India, and particularly for Delhi. Accurate reconstruction of PM2.5, its optical properties, and dominant chemical components over this region is essential to evaluate the performance of the air quality models. In this study, we investigated the effect of three different aerosol mechanisms coupled with gas-phase chemical schemes on simulated PM2.5 mass concentration in Delhi using the Weather Research and Forecasting model with the Chemistry module (WRF-Chem). The model was employed to cover the entire northern region of India at 10 km horizontal spacing. Results were compared with comprehensive filed data set on dominant PM2.5 chemical compounds from the Winter Fog Experiment (WiFEX) at Delhi, and surface PM2.5 observations in Delhi (17 sites), Punjab (3 sites), Haryana (4 sites), Uttar Pradesh (7 sites) and Rajasthan (17 sites). The Model for Ozone and Related Chemical Tracers (MOZART-4) gas-phase chemical mechanism coupled with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol scheme (MOZART-GOCART) were selected in the first experiment as it is currently employed in the operational air quality forecasting system of Ministry of Earth Sciences (MoES), Government of India. Other two simulations were performed with the MOZART-4 gas-phase chemical mechanism coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOZART-MOSAIC), and Carbon Bond 5 (CB-05) gas-phase mechanism couple with the Modal Aerosol Dynamics Model for Europe/Secondary Organic Aerosol Model (CB05-MADE/SORGAM) aerosol mechanisms. The evaluation demonstrated that chemical mechanisms affect the evolution of gas-phase precursors and aerosol processes, which in turn affect the optical depth and overall performance of the model for PM2.5. All the three coupled schemes, MOZART-GOCART, MOZART-MOSAIC, and CB05-MADE/SORGAM, underestimate the observed concentrations of major aerosol composition (NO3−, SO42−, Cl−, BC, OC, and NH4+) and precursor gases (HNO3, NH3, SO2, NO2, and O3) over Delhi. Comparison with observations suggests that the simulations using MOZART-4 gas-phase chemical mechanism with MOSAIC aerosol performed better in simulating aerosols over Delhi and its optical depth over the IGP. The lowest NMB (−18.8 %, MB = −27.4 μg/m3) appeared for the simulations using MOZART-MOSAIC scheme, whereas the NMB was observed 32.5 % (MB = −47.5 μg/m3) for CB05-MADE/SORGAM and −53.3 % (MB = −78 μg/m3) for MOZART-GOCART scheme.


2021 ◽  
Vol 13 (15) ◽  
pp. 2981
Author(s):  
Jeanné le Roux ◽  
Sundar Christopher ◽  
Manil Maskey

Planet, a commercial company, has achieved a key milestone by launching a large fleet of small satellites (smallsats) that provide high spatial resolution imagery of the entire Earth’s surface on a daily basis with its PlanetScope sensors. Given the potential utility of these data, this study explores the use for fine particulate matter (PM2.5) air quality applications. However, before these data can be utilized for air quality applications, key features of the data, including geolocation accuracy, calibration quality, and consistency in spectral signatures, need to be addressed. In this study, selected Dove-Classic PlanetScope data is screened for geolocation consistency. The spectral response of the Dove-Classic PlanetScope data is then compared to Moderate Resolution Imaging Spectroradiometer (MODIS) data over different land cover types, and under varying PM2.5 and mid visible aerosol optical depth (AOD) conditions. The data selected for this study was found to fall within Planet’s reported geolocation accuracy of 10 m (between 3–4 pixels). In a comparison of top of atmosphere (TOA) reflectance over a sample of different land cover types, the difference in reflectance between PlanetScope and MODIS ranged from near-zero (0.0014) to 0.117, with a mean difference in reflectance of 0.046 ± 0.031 across all bands. The reflectance values from PlanetScope were higher than MODIS 78% of the time, although no significant relationship was found between surface PM2.5 or AOD and TOA reflectance for the cases that were studied. The results indicate that commercial satellite data have the potential to address Earth-environmental issues.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


2017 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Melissa Anne Hart ◽  
Ningbo Jiang

Abstract. Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRB) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depending upon prevailing atmospheric conditions, can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates


2016 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 μg m−3 in northern China, but an increase in summertime PM2.5 by 6.0–8.0 μg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 μg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 μg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 μg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 μg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


Sign in / Sign up

Export Citation Format

Share Document