Anonymous referee comments on acp-2018-357 “Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe – Part 1: AERONET, MODIS and lidar observations” by Albert Ansmann et al.

2018 ◽  
Author(s):  
Anonymous
2018 ◽  
Author(s):  
Albert Ansmann ◽  
Holger Baars ◽  
Alexandra Chudnovsky ◽  
Moritz Haarig ◽  
Igor Veselovskii ◽  
...  

Abstract. Light extinction coefficients of 500 Mm−1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed with lidar in the stratosphere over Leipzig, Germany, on 22 August 2017. A pronounced smoke layer extended from 14–16 km height and was 3–4 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after injection into the lower stratosphere caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) was close to 1.0 at 532 nm over Leipzig during the noon hours. We present detailed observations of this record-breaking smoke event in a series of two articles. In part 1, we provide an overview of Aerosol Robotic Network (AERONET) sun photometer observations and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of AOT and show lidar measurements documenting the aerosol layering and the very high particle extinction coefficients. In part 2 (Haarig et al., 2018), observations with three polarization/Raman lidars are presented, performed at Leipzig after sunset on 22 August to elucidate the optical and microphysical properties of the aged smoke. As shown in this part 1, smoke particles were found throughout the free troposphere (532 nm AOT of 0.3). A pronounced 2-km thick stratospheric smoke layer occurred from 14–16 km height (AOT of 0.6). AERONET and lidar observations indicate peak mass concentrations of 70–100 μg m−3 in the stratosphere around noon and a well-defined (accumulation mode) smoke particle size distribution characterized by a large effective radius of 0.3–0.4 μm and the absence of a particle coarse mode.


2018 ◽  
Vol 18 (16) ◽  
pp. 11831-11845 ◽  
Author(s):  
Albert Ansmann ◽  
Holger Baars ◽  
Alexandra Chudnovsky ◽  
Ina Mattis ◽  
Igor Veselovskii ◽  
...  

Abstract. Light extinction coefficients of 500 Mm−1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by European Aerosol Research Lidar Network (EARLINET) lidars in the stratosphere over central Europe on 21–22 August 2017. Pronounced smoke layers with a 1–2 km vertical extent were found 2–5 km above the local tropopause. Optically dense layers of Canadian wildfire smoke reached central Europe 10 days after their injection into the upper troposphere and lower stratosphere which was caused by rather strong pyrocumulonimbus activity over western Canada. The smoke-related aerosol optical thickness (AOT) identified by lidar was close to 1.0 at 532 nm over Leipzig during the noon hours on 22 August 2017. Smoke particles were found throughout the free troposphere (AOT of 0.3) and in the pronounced 2 km thick stratospheric smoke layer at an altitude of 14–16 km (AOT of 0.6). The lidar observations indicated peak mass concentrations of 70–100 µg m−3 in the stratosphere. In addition to the lidar profiles, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) over Canada, and the distribution of MODIS AOT and Ozone Monitoring Instrument (OMI) aerosol index across the North Atlantic. These instruments showed a similar pattern and a clear link between the western Canadian fires and the aerosol load over Europe. In this paper, we also present Aerosol Robotic Network (AERONET) sun photometer observations, compare photometer and lidar-derived AOT, and discuss an obvious bias (the smoke AOT is too low) in the photometer observations. Finally, we compare the strength of this record-breaking smoke event (in terms of the particle extinction coefficient and AOT) with major and moderate volcanic events observed over the northern midlatitudes.


2021 ◽  
Author(s):  
Igor Veselovskii ◽  
Qiaoyun Hu ◽  
Albert Ansmann ◽  
Philippe Goloub ◽  
Thierry Podvin ◽  
...  

Abstract. A remote sensing method, based on fluorescence lidar measurements, that allows to detect and to quantify the smoke content in upper troposphere and lower stratosphere (UTLS) is presented. The unique point of this approach is that, smoke and cirrus properties are observed in the same air volume simultaneously. In the article, we provide results of fluorescence and multiwavelength Mie-Raman lidar measurements performed at ATOLL observatory from Laboratoire d’Optique Atmosphérique, University of Lille, during strong smoke episodes in the summer and autumn seasons of 2020. The aerosol fluorescence was induced by 355 nm laser radiation and the fluorescence backscattering was measured in a single spectral channel, centered at 466 nm of 44 nm width. To estimate smoke properties, such as number, surface area and volume concentration, the conversion factors, which link the fluorescence backscattering and the smoke microphysical properties, are derived from the synergy of multiwavelength Mie-Raman and fluorescence lidar observations. Based on two case studies, we demonstrate that the fluorescence lidar technique provides possibility to estimate the smoke surface area concentration within freshly formed cirrus layers. This value was used in smoke INP parameterization scheme to predict ice crystal number concentrations in cirrus generation cells.


Sign in / Sign up

Export Citation Format

Share Document