scholarly journals Influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single scattering albedo

Author(s):  
Xuezhe Xu ◽  
Weixiong Zhao ◽  
Xiaodong Qian ◽  
Shuo Wang ◽  
Bo Fang ◽  
...  

Abstract. Coating enhancement of black carbon (BC) light absorption (Eabs) is a large uncertainty in modelling direct radiative forcing (DRF) by BC. Reported Eabs values after atmospheric aging vary widely and the mechanisms responsible for enhancing BC absorption remain elusive. Here, we report on the direct field measurement of size-resolved mixing state, Eabs and aerosol single scattering albedo (SSA) at λ = 532 nm at a rural site in East China from June to July 2016. Strong diurnal variability of Eabs, SSA, and Ox (Ox = NO2 + O3, a proxy for atmospheric photochemical aging) was observed. A three-stage absorption enhancement process for collapsed semispherical to fully compact spherical morphology BC with photochemical aging was suggested. For Ox below 35 ppbv, Eabs increased slowly with Ox mixing ratio and ranged from 2.0 to 2.2 (with a growth rate of ~ 0.03 ppbv−1). Eabs was stable (Eabs = 2.26 ± 0.06) between 35 to 50 ppbv Ox. Thirdly, for Ox levels above 50 ppbv, Eabs grew rapidly from 2.3 to 2.8 (at a growth rate of ~ 0.18 ppbv−1). A method that combined Eabs and SSA was developed to retrieve the fraction contribution of BC absorption (fBC), lensing driven enhancement (fLens), as well as the fractional contribution of coating absorption (fraction absorption contribution (fShell), the coated shell diameter (DShell) and the imaginary part of the complex refractive index (CRI) of the shell (kShell)). Parameterization of Eabs and SSA captures much of the influence of BC coating and the particle absorption, and provides a plausible new method to better constrain the contribution of BC to the DRF. In our measurements at this site, the absorption amplification depended mainly on the coating thickness and the absorption of coating materials. The lensing driven enhancement was reduced by light absorption of the shell. Our observations highlight the crucial role of photochemical processes in modifying the absorption of BC-containing particles. One implication of these findings is that the contribution of light-absorbing organic compounds (Brown carbon, BrC) at longer aging time should be included in climate models.

2018 ◽  
Vol 18 (23) ◽  
pp. 16829-16844 ◽  
Author(s):  
Xuezhe Xu ◽  
Weixiong Zhao ◽  
Xiaodong Qian ◽  
Shuo Wang ◽  
Bo Fang ◽  
...  

Abstract. Coating enhancement of black carbon (BC) light absorption (Eabs) is a large uncertainty in modelling direct radiative forcing (DRF) by BC. Reported Eabs values after atmospheric aging vary widely and the mechanisms responsible for enhancing BC absorption remain elusive. Here, we report on the direct field measurement of size-resolved mixing state, Eabs, and aerosol single-scattering albedo (SSA) at λ = 532 nm at a rural site in east China from June to July 2016. Strong diurnal variability of Eabs, SSA, and Ox (Ox = NO2 + O3, a proxy for atmospheric photochemical aging) was observed. A method that combined Eabs and SSA was developed to retrieve the fraction contribution of BC absorption (fBC), lensing-driven enhancement (fLens), as well as the fractional contribution of coating absorption (fraction absorption contribution (fShell), the coated shell diameter (DShell) and the imaginary part of the complex refractive index (CRI) of the shell (kShell)). Parameterization of Eabs and SSA captures much of the influence of BC coating and the particle absorption. In our measurements at this site, the results showed that the absorption amplification depended on the coating thickness and the absorption of coating materials, and photochemistry plays a role in modifying the absorption of BC-containing particles. The lensing-driven enhancement was reduced by light absorption of the shell. One implication of these findings is that the contribution of light-absorbing organic compounds (brown carbon, BrC) at a longer aging time should be included in climate models.


2010 ◽  
Vol 10 (9) ◽  
pp. 4207-4220 ◽  
Author(s):  
D. A. Lack ◽  
C. D. Cappa

Abstract. The presence of clear coatings on atmospheric black carbon (BC) particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (EAbs) by atmospheric black carbon (BC) when it is coated in mildly absorbing material (CBrown) is reduced relative to the enhancement induced by non-absorbing coatings (CClear). This reduction, sensitive to both the CBrown coating thickness and imaginary refractive index (RI), can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (>50 nm). For smaller BC cores (or fractal agglomerates) consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It has often been assumed that observation of an absorption Angström exponent (AAE)>1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in CClear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown; rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these model results to various ambient AAE measurements demonstrates that large-scale attribution of CBrown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and shell sizes along with the AAE may be necessary to distinguish absorbing and non-absorbing OC.


2019 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) to radiative forcing of the Arctic atmosphere, vertically-resolved measurements of the particle light scattering coefficient (Bsp) and light absorption coefficient (Bap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80oN. Here, relationships among vertically-distributed aerosol optical properties Bap, Bsp, and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9oN and 83.4oN from near the surface to 500 hPa. Airborne data collected during April, 2015, are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the GEOS-Chem-TOMAS model (Kodros et al., 2018) to increase our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for Bsp less than 15 Mm-1, which represent 98% of the observed Bsp, because the single scattering albedo (SSA) has a tendency to be lower at lower Bsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g-1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (9.5 m2 g-1 and 7.0 m2 g-1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC and possible differences in BC microphysics and morphologies between the observations and model. We present Bap and SSA based on the assumption that Bap is overestimated in the observations in addition to the assumption that the higher MAC is explained. Median values of the measured Bap, rBC and organic component of particles all increase by a factor of 1.8±0.1 going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics, and Bap agree with the near-surface measurements, but do not reproduce the higher values observed between 900 hPa and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Some discrepancies in the model may be due to the use of a relatively low imaginary refractive index of BC as well as by the ejection of biomass burning particles only into the boundary layer at sources. For the assumption of the higher observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of Bsp <15 Mm-1. The large uncertainties in measuring optical properties and BC as well as the large differences between measured and modelled values, here and in the literature, argue for improved measurements of BC and light absorption by BC as well as more vertical profiles of aerosol chemistry, microphysics, and other optical properties in the Arctic.


2019 ◽  
Author(s):  
Jia Yin Sun ◽  
Cheng Wu ◽  
Dui Wu ◽  
Chunlei Cheng ◽  
Mei Li ◽  
...  

Abstract. Black carbon (BC) is an important climate forcer in the atmosphere. Amplification of light absorption can occur by coatings on BC aerosols, an effect that remains one of the major sources of uncertainties for accessing the radiative forcing of BC. In this study, the absorption enhancement factor (Eabs) was quantified by the minimum R squared (MRS) method using elemental carbon (EC) as the tracer. Two field campaigns were conducted in urban Guangzhou at the Jinan university super site during both wet season (July 31–September 10, 2017) and dry season (November 15, 2017–January 15, 2018) to explore the temporal dynamics of BC optical properties. The average concentration of EC was 1.94 ± 0.93 and 2.81 ± 2.01 μgC m−3 in the wet and dry seasons, respectively. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by MRS exhibit a strong seasonality (8.6 m2g−1 in the wet season and 16.8 m2g−1 in the dry season). Eabs520 was higher in the wet season (1.51 ± 0.50) and lower in the dry season (1.29 ± 0.28). Absorption Ångström exponent (AAE470-660) in the dry season (1.46 ± 0.12) were higher than that in the wet season (1.37 ± 0.10). Collective evidence showed that the active biomass burning (BB) in dry season effectively altered optical properties of BC, leading to elevated MAE, MAEp and AAE in dry season comparing to those in wet season. Diurnal Eabs520 was positively correlated with AAE470-660 (R2 = 0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2 = 0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that lensing effect was dominating the AAE diurnal variability during the wet season. The effect of secondary processing on Eabs diurnal dynamic were also investigated. The Eabs520 exhibit a clear dependency on secondary organic carbon to organic carbon ratio (SOC/OC). Eabs520 correlated well with nitrate, implying that gas-particle partitioning of semi-volatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In dry season, the diurnal variability of Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2 = 0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.


2010 ◽  
Vol 10 (1) ◽  
pp. 785-819 ◽  
Author(s):  
D. A. Lack ◽  
C. D. Cappa

Abstract. The presence of clear coatings on atmospheric black carbon (BC) particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate the enhancement of light absorption (EAbs) by atmospheric black carbon (BC) when coated in mildly absorbing material (CBrown) is reduced, relative to the enhancement by non-absorbing coatings (CClear). This reduction, sensitive to CBrown shell thickness and imaginary refractive index (RI), can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only whensub models treat BC as large spherical cores (>50 nm). For smaller BC cores (or fractal agglomerates) consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It is often assumed that observation of an absorption Angstrom exponent (AAE) >1 indicates non-BC absorption. Here, it is shown that BC cores coated in CClearcan reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown, rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these results to some ambient AAE data shows that large-scale attribution of CBrown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and shell sizes along with the AAE may be necessary to distinguish absorbing and non-absorbing OC.


2020 ◽  
Vol 20 (17) ◽  
pp. 10545-10563 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the Goddard Earth Observing System (GEOS) model, GEOS-Chem, coupled with the TwO-Moment Aerosol Sectional (TOMAS) model (collectively GEOS-Chem–TOMAS; Kodros et al., 2018) to further our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for σsp less than 15 Mm−1, which represent 98 % of the observed σsp, because the single scattering albedo (SSA) has a tendency to be lower at lower σsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g−1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (13.6 and 9.1 m2 g−1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC, the presence of small amounts of dust and/or possible differences in BC microphysics and morphologies between the observations and model. In comparing the observations and simulations, we present σap and SSA, as measured, and σap∕2 and the corresponding SSA to encompass the lower modelled MAC that is more consistent with accepted MAC values. Median values of the measured σap, rBC and the organic component of particles all increase by a factor of 1.8±0.1, going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics and σap agree with the near-surface measurements but do not reproduce the higher values observed between 900 and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Model-observation discrepancies may be mostly due to the modelled ejection of biomass burning particles only into the boundary layer at the sources. For the assumption of the observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of σsp<15 Mm−1. The large uncertainties in measuring optical properties and BC, and the large differences between measured and modelled values here and in the literature, argue for improved measurements of BC and light absorption by BC and more vertical profiles of aerosol chemistry, microphysics and other optical properties in the Arctic.


2020 ◽  
Vol 20 (4) ◽  
pp. 2445-2470 ◽  
Author(s):  
Jia Yin Sun ◽  
Cheng Wu ◽  
Dui Wu ◽  
Chunlei Cheng ◽  
Mei Li ◽  
...  

Abstract. Black carbon (BC) aerosols have been widely recognized as a vital climate forcer in the atmosphere. Amplification of light absorption can occur due to coatings on BC during atmospheric aging, an effect that remains uncertain in accessing the radiative forcing of BC. Existing studies on the absorption enhancement factor (Eabs) have poor coverage on both seasonal and diurnal scales. In this study, we applied a recently developed minimum R squared (MRS) method, which can cover both seasonal and diurnal scales, for Eabs quantification. Using field measurement data in Guangzhou, the aims of this study are to explore (1) the temporal dynamics of BC optical properties at seasonal (wet season, 31 July–10 September; dry season, 15 November 2017–15 January 2018) and diel scales (1 h time resolution) in the typical urban environment and (2) the influencing factors on Eabs temporal variability. Mass absorption efficiency at 520 nm by primary aerosols (MAEp520) determined by the MRS method exhibited a strong seasonality (8.6 m2 g−1 in the wet season and 16.8 m2 g−1 in the dry season). Eabs520 was higher in the wet season (1.51±0.50) and lower in the dry season (1.29±0.28). Absorption Ångström exponent (AAE470–660) in the dry season (1.46±0.12) was higher than that in the wet season (1.37±0.10). Collective evidence showed that the active biomass burning (BB) in the dry season effectively altered the optical properties of BC, leading to elevated MAE, MAEp and AAE in the dry season compared to those in the wet season. Diurnal Eabs520 was positively correlated with AAE470–660 (R2=0.71) and negatively correlated with the AE33 aerosol loading compensation parameter (k) (R2=0.74) in the wet season, but these correlations were significantly weaker in the dry season, which may be related to the impact of BB. This result suggests that during the wet season, the lensing effect was more likely dominating the AAE diurnal variability rather than the contribution from brown carbon (BrC). Secondary processing can affect Eabs diurnal dynamics. The Eabs520 exhibited a clear dependency on the ratio of secondary organic carbon to organic carbon (SOC∕OC), confirming the contribution of secondary organic aerosols to Eabs; Eabs520 correlated well with nitrate and showed a clear dependence on temperature. This new finding implies that gas–particle partitioning of semivolatile compounds may potentially play an important role in steering the diurnal fluctuation of Eabs520. In the dry season, the diurnal variability in Eabs520 was associated with photochemical aging as evidenced by the good correlation (R2=0.69) between oxidant concentrations (Ox=O3+NO2) and Eabs520.


2021 ◽  
Author(s):  
Jiaxing Sun ◽  
Yele Sun ◽  
Conghui Xie ◽  
Weiqi Xu ◽  
Chun Chen ◽  
...  

Abstract. The radiative forcing of black carbon (BC) depends strongly on its mixing state in different chemical environments. Here, we analyzed the chemical composition and mixing state of BC-containing particles by using a single particle aerosol mass spectrometer and investigated their impacts on light absorption enhancement (Eabs) at an urban (Beijing) and a rural site (Gucheng) in North China Plain. While the BC was dominantly mixed with organic carbon (OC), nitrate and sulfate at both urban and rural sites, the rural site showed much higher fraction of BC coated with OC and nitrate (36 % vs. 15 – 20 %). Moreover, the BC mixing state evolved significantly as a function of relative humidity with largely increased coatings of OC-nitrate and nitrate at high RH levels. By linking with the bulk composition of organic aerosol (OA), we found that the OC coated on BC comprised dominantly secondary OA in Beijing, while primary and secondary OA were similarly important in Gucheng. Furthermore, Eabs was highly dependent on the secondary inorganic aerosol coated on BC at both sites, while the coated primary OC also resulted in an Eabs of ~1.2 for relatively fresh BC particles at the rural site. Positive matrix factorization analysis was performed to quantify the impact of different mixing state on Eabs. Our results showed the small Eabs (1.06 ~ 1.11) for BC particles from fresh primary emissions, while the Eabs increased significantly above 1.3 when BC was aged rapidly with increased coatings of OC-nitrate or nitrate, and it can reach above 1.4 as sulfate was involved in BC aging.


Sign in / Sign up

Export Citation Format

Share Document