single scatter
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 21)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-46
Author(s):  
Sarah J. Doherty ◽  
Pablo E. Saide ◽  
Paquita Zuidema ◽  
Yohei Shinozuka ◽  
Gonzalo A. Ferrada ◽  
...  

Abstract. Biomass burning smoke is advected over the southeastern Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly in both magnitude and sign. NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) had deployments for field campaigns off the west coast of Africa in 3 consecutive years (September 2016, August 2017, and October 2018) with the goal of better characterizing this plume as a function of the monthly evolution by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on the comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models, the simulated plume is too vertically diffuse and has smaller vertical gradients, and in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate underestimates in modeled plume concentrations, leading, in general, to underestimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2017) and September (2016). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and, therefore, in the aerosol direct radiative effect. Model biases in cloud fraction, and, therefore, the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is underestimated in the GEOS model; UM-UKCA simulates cloud optical thickness that is significantly too high. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a subset of five comparison grid boxes. A significant finding is that the observed grid box average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five grid boxes, whereas DARE using the grid-box-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.


2021 ◽  
Vol 46 (17) ◽  
pp. 4337
Author(s):  
Tian Cao ◽  
Xinyu Gao ◽  
Tianfeng Wu ◽  
Changyong Pan ◽  
Jian Song

2021 ◽  
Author(s):  
Tian Cao ◽  
Xinyu Gao ◽  
Tianfeng Wu ◽  
Changyong Pan ◽  
Jian Song

2021 ◽  
Vol 7 (2) ◽  
pp. 645-654
Author(s):  
Hoang Thanh Hanh

In recent years, Vietnam commerce sector have received many impacts from trade war and covid 19 ,we conduct this study in order to figure out what factors affect accounting net revenue of a typical Vietnam company in commerce industry, My Tra Company (MTC). This study mainly use combination of quantitative methods (statistics, calculation formulas) and qualitative methods including synthesis, inductive and explanatory methods. Our study main results show that: for single scatter chart with regression, most of factors have positive correlation with accounting net revenue. Next, Because admin expense has positive correlation with revenue, MTC managers need to control admin expense and increase at acceptable level to boost revenue of the firm. And because sale cost and COGS has positive correlation with net revenue, MTC management need to increase sale and COGS cost rationally to boost revenue. Besides, this study also give out recommendations for enhancing accounting net revenue of the business - My Tra company (MTC) in Vietnam commerce sector. 


2021 ◽  
Vol 14 (5) ◽  
pp. 3953-3972
Author(s):  
Daniel Zawada ◽  
Ghislain Franssens ◽  
Robert Loughman ◽  
Antti Mikkonen ◽  
Alexei Rozanov ◽  
...  

Abstract. A comprehensive inter-comparison of seven radiative transfer models in the limb scattering geometry has been performed. Every model is capable of accounting for polarization within a spherical atmosphere. Three models (GSLS, SASKTRAN-HR, and SCIATRAN) are deterministic, and four models (MYSTIC, SASKTRAN-MC, Siro, and SMART-G) are statistical using the Monte Carlo technique. A wide variety of test cases encompassing different atmospheric conditions, solar geometries, wavelengths, tangent altitudes, and Lambertian surface reflectances have been defined and executed for every model. For the majority of conditions it was found that the models agree to better than 0.2 % in the single-scatter test cases and better than 1 % in the scalar and vectorial test cases with multiple scattering included, with some larger differences noted at high values of surface reflectance. For the first time in limb geometry, the effect of atmospheric refraction was compared among four models that support it (GSLS, SASKTRAN-HR, SCIATRAN, and SMART-G). Differences among most models with multiple scattering and refraction enabled were less than 1 %, with larger differences observed for some models. Overall the agreement among the models with and without refraction is better than has been previously reported in both scalar and vectorial modes.


2021 ◽  
Author(s):  
Sarah J. Doherty ◽  
Pablo E. Saide ◽  
Paquita Zuidema ◽  
Yohei Shinozuka ◽  
Gonzalo A. Ferrada ◽  
...  

Abstract. Biomass burning smoke is advected over the southeast Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly, in both magnitude and sign. The NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project deployed for field campaigns off the west coast of Africa in three consecutive years (Sept., 2016; Aug., 2017; and Oct., 2018) with the goal of better characterizing this plume as a function of the monthly evolution, by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect, and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models the simulated plume is too vertically diffuse, has smaller vertical gradients, and, in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate under-estimates in modeled plume concentrations, leading in general to under-estimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2018) and September (2017). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and therefore in the aerosol direct radiative effect. Model biases in cloud fraction, and therefore the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is under-estimated in the GEOS model; UM-UKCA simulates significantly too-high cloud optical thickness. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a sub-set of five comparison gridboxes. A significant finding is that the observed gridbox-average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five gridboxes, whereas DARE using the gridbox-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo, but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.


2021 ◽  
Vol 13 (6) ◽  
pp. 1114
Author(s):  
Jianyu Lin ◽  
Yu Zheng ◽  
Xinyong Shen ◽  
Lizhu Xing ◽  
Huizheng Che

The particle linear depolarization ratio (PLDR) and single scatter albedo (SSA) in 1020 nm from the Aerosol Robotic Network (AERONET) level 2.0 dataset was utilized among 52 stations to identify dust and dust dominated aerosols (DD), pollution dominated mixture (PDM), strongly absorbing aerosols (SA) and weakly absorbing aerosols (WA), investigate their spatial and temporal distribution, net radiative forcing and radiative forcing efficiency in global range, and further compare with VIIRS Deep Blue Production. The conclusion about net radiative forcing suggests that the high values of radiative forcing from dust and dust dominated aerosols, pollution dominated mixture both mainly come from western Africa. Strongly absorbing aerosols in South Africa and India contribute greatly to the net radiative forcing and the regions with relative high values of weakly absorbing aerosols are mainly located at East Asia and India. Lastly, the observation of VIIRS Deep Blue satellite monthly averaged products depicts the characteristics about spatial distribution of four kinds of aerosol well, the result from ground-based observation presents great significant to validate the measurements from remote sensing technology.


2021 ◽  
Author(s):  
Daniel Zawada ◽  
Ghislain Franssens ◽  
Robert Loughman ◽  
Antti Mikkonen ◽  
Alexei Rozanov ◽  
...  

Abstract. A comprehensive inter-comparison of seven radiative transfer models in the limb scattering geometry has been performed. Every model is capable of accounting for polarisation within a fully spherical atmosphere. Three models (GSLS, SASKTRAN-HR, and SCIATRAN) are deterministic, and four models (MYSTIC, SASKTRAN-MC, Siro, and SMART-G) are statistical using the Monte Carlo technique. A wide variety of test cases encompassing different atmospheric conditions, solar geometries, wavelengths, tangent altitudes, and Lambertian surface reflectances have been defined and executed for every model. For the majority of conditions it was found that the models agree to better than 0.2 % in the single scatter test cases and better than 1 % in the multiple scatter scalar and vector test cases, with some larger differences noted at high values of surface reflectance in multiple scatter. For the first time in limb geometry, the effect of atmospheric refraction was compared among four models that support it (GSLS, SASKTRAN-HR, SCIATRAN, and SMART-G). Differences among most models in multiple scatter with refraction enabled was less than 1 %, with larger differences observed for some models. Overall the agreement among the models with and without refraction is better than has been previously reported in both scalar and vector modes.


Sign in / Sign up

Export Citation Format

Share Document