scholarly journals Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method

2020 ◽  
Author(s):  
Anna Shcherbacheva ◽  
Tracey Balehowsky ◽  
Jakub Kubečka ◽  
Tinja Olenius ◽  
Tapio Helin ◽  
...  

Abstract. We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC)algorithm to determine cluster evaporation/fragmentation rates from known cluster distributions, assuming that the clustercollision rates are known. We used the Atmospheric Cluster Dynamic Code (ACDC) with evaporation rates based on quantumchemical calculations to generate cluster distributions for a set of electrically neutral sulphuric acid and ammonia clusters. We then treated these concentrations as synthetic experimental data, and tested two approaches for estimating the evaporation rates. First we have studied a scenario where at one single temperature time-dependent cluster distributions are measured before thesystem reaches a time-independent steady-state. In the second scenario only steady-state cluster distributions are measured, butat several temperatures. This allowed us to use multiple sets of concentrations at different temperatures. Additionally, in thelatter case the evaporation rates were represented in terms of cluster formation enthalpies and entropies which were considered to be free parameters. This reparametrization reduced the number of unknown parameters, since several evaporation ratesdepend on the same cluster formation enthalpy and entropy values. We show that in the second setting, even if only two temperatures were used, the temperature-dependent steady-state dataoutperforms the first setting for parameter identification. We can thus conclude that for experimentally determining evaporationrates, cluster distribution measurements at several temperatures are recommended over time-dependent measurements at one temperature.

2020 ◽  
Vol 20 (24) ◽  
pp. 15867-15906
Author(s):  
Anna Shcherbacheva ◽  
Tracey Balehowsky ◽  
Jakub Kubečka ◽  
Tinja Olenius ◽  
Tapio Helin ◽  
...  

Abstract. We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC) algorithm to determine cluster evaporation/fragmentation rates from synthetic cluster distributions generated by the Atmospheric Cluster Dynamics Code (ACDC) and based on gas kinetic collision rate coefficients and evaporation rates obtained using quantum chemical calculations and detailed balances. The studied system consisted of electrically neutral sulfuric acid and ammonia clusters with up to five of each type of molecules. We then treated the concentrations generated by ACDC as synthetic experimental data. With the assumption that the collision rates are known, we tested two approaches for estimating the evaporation rates from these data. First, we studied a scenario where time-dependent cluster distributions are measured at a single temperature before the system reaches a steady state. In the second scenario, only steady-state cluster distributions are measured but at several temperatures. Additionally, in the latter case, the evaporation rates were represented in terms of cluster formation enthalpies and entropies. This reparameterization reduced the number of unknown parameters, since several evaporation rates depend on the same cluster formation enthalpy and entropy values. We also estimated the evaporation rates using previously published synthetic steady-state cluster concentration data at one temperature and compared our two cases to this setting. Both the time-dependent and the two-temperature steady-state concentration data allowed us to estimate the evaporation rates with less variance than in the steady-state single-temperature case. We show that temperature-dependent steady-state data outperform single-temperature time-dependent data for parameter estimation, even if only two temperatures are used. We can thus conclude that for experimentally determining evaporation rates, cluster distribution measurements at several temperatures are recommended over time-dependent measurements at one temperature.


2016 ◽  
Author(s):  
Oona Kupiainen-Määttä

Abstract. Evaporation rates of small negatively charged sulfuric acid–ammonia clusters are determined by combining detailed cluster formation simulations with cluster distributions measured at CLOUD. The analysis is performed by varying the evaporation rates with Markov chain Monte Carlo (MCMC), running cluster formation simulations with each new set of evaporation rates and comparing the obtained cluster distributions to the measurements. In a second set of simulations, the fragmentation of clusters in the mass spectrometer due to energetic collisions is studied by treating also the fragmentation probabilities as unknown parameters and varying them with MCMC. This second set of simulations results in a better fit to the experimental data, suggesting that a large fraction of the observed HSO4− and HSO4− ⋅ H2SO4 signals may result from fragmentation of larger clusters, most importantly the HSO4− ⋅ (H2SO4)2 trimer.


2016 ◽  
Vol 16 (22) ◽  
pp. 14585-14598 ◽  
Author(s):  
Oona Kupiainen-Määttä

Abstract. Evaporation rates of small negatively charged sulfuric acid–ammonia clusters are determined by combining detailed cluster formation simulations with cluster distributions measured in the CLOUD experiment at CERN. The analysis is performed by varying the evaporation rates with Markov chain Monte Carlo (MCMC), running cluster formation simulations with each new set of evaporation rates and comparing the obtained cluster distributions to the measurements. In a second set of simulations, the fragmentation of clusters in the mass spectrometer due to energetic collisions is studied by treating also the fragmentation probabilities as unknown parameters and varying them with MCMC. This second set of simulations results in a better fit to the experimental data, suggesting that a large fraction of the observed HSO4− and HSO4− ⋅ H2SO4 signals may result from fragmentation of larger clusters, most importantly the HSO4− ⋅ (H2SO4)2 trimer.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


1993 ◽  
Vol 58 (10) ◽  
pp. 2266-2271 ◽  
Author(s):  
Herbert Morawetz

Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.


RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


1988 ◽  
Vol 53 (22) ◽  
pp. 2205-2207 ◽  
Author(s):  
K. Sadra ◽  
C. M. Maziar ◽  
B. G. Streetman ◽  
D. S. Tang

Sign in / Sign up

Export Citation Format

Share Document