scholarly journals Enrichment of submicron sea salt-containing particles in small cloud droplets based on single particle mass spectrometry

2019 ◽  
Author(s):  
Qinhao Lin ◽  
Yuxiang Yang ◽  
Yuzhen Fu ◽  
Guohua Zhang ◽  
Feng Jiang ◽  
...  

Abstract. The effects of chemical composition and size of sea salt-containing particles on their cloud condensation nuclei (CCN) activity are incompletely understood. We used a ground-based counterflow virtual impactor (GCVI) coupled with a single particle aerosol mass spectrometer (SPAMS) to characterize chemical composition of submicron (dry diameter of 0.2–1.0 μm) and supermicron (dry diameter of 1.0–2.0 μm) sea salt-containing cloud residues (dried cloud droplets) at Mount Nanling, southern China. Seven cut sizes (7.5–14 μm) of cloud droplets were set in the GCVI system. Approximately 20 % (by number) of the submicron cloud residues included sea salt-containing particles at the cut size of 7.5 μm, which was significantly higher than the percentages at the cut sizes of 8–14 μm (below 2 %). This difference was likely to be involved in the change in the chemical composition. For the cut size of 7.5 μm, nitrate was internally mixed with over 90 % of the submicron sea salt-containing cloud residues, which was higher than sulfate (20 %), ammonium (below 1 %), amines (6 %), hydrocarbon organic species (2 %), and organic acids (4 %). However, nitrate, sulfate, ammonium, amines, hydrocarbon organic species, and organic acids were internally mixed with over 90 %, over 80 %, 39–84 %, 71–86 %, 52–90 %, and 32–77 %, respectively, of the submicron sea salt-containing cloud residues for the cut sizes of 8–14 μm. The proportion of sea salt-containing particles in the supermicron cloud residues generally increased as a function of cut size, and their CCN activity was less influenced by chemical composition. This study highlights the different distribution of the submicron and supermicron sea salt-containing particles in various cloud droplets, which might further influence their atmospheric residence time.

2019 ◽  
Vol 19 (16) ◽  
pp. 10469-10479 ◽  
Author(s):  
Qinhao Lin ◽  
Yuxiang Yang ◽  
Yuzhen Fu ◽  
Guohua Zhang ◽  
Feng Jiang ◽  
...  

Abstract. The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei (CCN) activity are incompletely understood. We used a ground-based counterflow virtual impactor (GCVI) coupled with a single-particle aerosol mass spectrometer (SPAMS) to characterize chemical composition of submicron (dry diameter of 0.2–1.0 µm) and supermicron (1.0–2.0 µm) sea-salt-containing cloud residues (dried cloud droplets) at Mount Nanling, southern China. Seven cut sizes (7.5–14 µm) of cloud droplets were set in the GCVI system. The highest number fraction of sea-salt-containing particles was observed at the cut size of 7.5 µm (26 %, by number), followed by 14 µm (17 %) and the other cut sizes (3 %–5 %). The submicron sea-salt-containing cloud residues contributed approximately 20 % (by number) at the cut size of 7.5 µm, which was significantly higher than the percentages at the cut sizes of 8–14 µm (below 2 %). This difference was likely involved in the change in the chemical composition. At the cut size of 7.5 µm, nitrate was internally mixed with over 90 % of the submicron sea-salt-containing cloud residues, which was higher than sulfate (20 %), ammonium (below 1 %), amines (6 %), hydrocarbon organic species (2 %), and organic acids (4 %). However, at the cut sizes of 8–14 µm, nitrate, sulfate, ammonium, amines, hydrocarbon organic species, and organic acids were internally mixed with > 90 %, > 80 %, 39 %–84 %, 71 %–86 %, 52 %–90 %, and 32 %–77 % of the submicron sea-salt-containing cloud residues. The proportion of sea-salt-containing particles in the supermicron cloud residues generally increased as a function of cut size, and their CCN activity was less influenced by chemical composition. This study provided a significant contribution towards a comprehensive understanding of sea-salt CCN activity.


2017 ◽  
Vol 17 (24) ◽  
pp. 14975-14985 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05–0.45) to a similar (or slightly lower) extent as all the measured particles (0.07–0.6) over the measured size range of 0.1–1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.


2017 ◽  
Vol 17 (13) ◽  
pp. 8473-8488 ◽  
Author(s):  
Qinhao Lin ◽  
Guohua Zhang ◽  
Long Peng ◽  
Xinhui Bi ◽  
Xinming Wang ◽  
...  

Abstract. To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 %) to the total cloud residues. Higher fraction of nitrate (88–89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41–42 %) and ammonium (15–23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.


2017 ◽  
Author(s):  
Guohua Zhang ◽  
Qinhao Lin ◽  
Long Peng ◽  
Xinhui Bi ◽  
Duohong Chen ◽  
...  

Abstract. In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles in a size range of 0.1–1.6 µm and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and were activated into cloud droplets to the same extent as all the measured particles. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were activated less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Since limited information on BC-containing particles in the free troposphere is available, the results also provide an important reference for the representation of BC concentrations, properties, and climate impacts in modeling studies.


2011 ◽  
Vol 11 (8) ◽  
pp. 21789-21834
Author(s):  
R. H. Moore ◽  
R. Bahreini ◽  
C. A. Brock ◽  
K. D. Froyd ◽  
J. Cozic ◽  
...  

Abstract. We present a comprehensive characterization of cloud condensation nuclei (CCN) sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project, a component of the POLARCAT and International Polar Year (IPY) initiatives. Four distinct air mass types were sampled including relatively pristine Arctic background conditions as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Analysis of the individual mass spectral m/z 43 and 44 peaks from an aerosol mass spectrometer show the organic aerosols sampled to be well-oxygenated, consistent with with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosol act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20 % of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition measurements, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (± 0–20 %) obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.


2013 ◽  
Vol 13 (16) ◽  
pp. 7983-7996 ◽  
Author(s):  
Z. J. Wu ◽  
L. Poulain ◽  
S. Henning ◽  
K. Dieckmann ◽  
W. Birmili ◽  
...  

Abstract. Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (κHTDMA) and chemical composition-derived (κchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg, is positively correlated with the O : C ratio (κorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (κCCN) and chemical composition (κCCN, chem) was performed using CCNc-derived κ values for individual components. The results show that the κCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule.


Author(s):  
L. Zhao ◽  
C. Yang

Abstract. The chemical composition of aerosols was investigated using regular environmental air quality observation, a single particle aerosol mass spectrometer (SPAMS 0515) and an ambient ion monitor (URG 9000D) in Xiamen in 2018. The results showed that the annual average mass concentrations of PM2.5 was 22 μm/m3, and concentrations of water-soluble inorganic ions was 9.94 μm/m3 which accounted for 45.2% of PM2.5. SO42−, NO3− and NH4+ were main components of secondary reactions which contributed more than 77 percent of water-soluble inorganic ion concentration. As a coastal city, Cl− and Na+ contributed 13.9 percent of water-soluble inorganic ion concentration. Based on single particle aerosol mass spectrometer analysing, mobile sources emission was the most important sources of particle matter which contributed over 30%.


2019 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles C.-K. Chou ◽  
Celine S. L. Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matters (PM2.5), the size distribution and number concentration of aerosol particles (NCN) and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation diameter and kappa) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, including aged air pollutants originating in the eastern/northern China and transported on the Asian continental outflows, fresh particles emitted from local sources and distributed by land-sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster analysis was applied to the backward trajectories of air masses to investigate their respective source regions. The results showed that the aerosols associated with Asian continental outflows were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa values were found for aerosols in local air masses. The distinct features in hygroscopicity were consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study revealed that the nucleation mode particles from NPF could have participated in the enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although the freshly produced particles were not favored for CCN activation due to their smaller sizes. Thus, the results of this study suggested that the NPF coupling with coagulation processes can significantly increase the NCCN in atmosphere.


2011 ◽  
Vol 11 (17) ◽  
pp. 8913-8928 ◽  
Author(s):  
A. T. Lambe ◽  
T. B. Onasch ◽  
P. Massoli ◽  
D. R. Croasdale ◽  
J. P. Wright ◽  
...  

Abstract. Secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA) were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM) flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS). The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44), the hydrogen-to-carbon (H/C) ratio, and the oxygen-to-carbon (O/C) ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA). The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44–f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN) activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04) ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and oxidation level can be defined for use in chemistry and climate models.


2013 ◽  
Vol 13 (9) ◽  
pp. 23817-23843 ◽  
Author(s):  
E. J. T. Levin ◽  
A. J. Prenni ◽  
B. Palm ◽  
D. Day ◽  
P. Campuzano-Jost ◽  
...  

Abstract. Aerosol hygroscopicity describes the ability of a particle to take up water and form a cloud droplet. Modeling studies have shown sensitivity of precipitation-producing cloud systems to the availability of aerosol particles capable of serving as cloud condensation nuclei (CCN), and hygroscopicity is a key parameter controlling the number of available CCN. Continental aerosol is typically assumed to have a representative hygroscopicity parameter, κ, of 0.3; however, in remote locations this value can be lower due to relatively large mass fractions of organic components. To further our understanding of aerosol properties in remote areas, we measured size-resolved aerosol chemical composition and hygroscopicity in a forested, mountainous site in Colorado during the six-week BEACHON-RoMBAS campaign. This campaign followed a year-long measurement period at this site, and results from the intensive campaign shed light on the previously reported seasonal cycle in aerosol hygroscopicity. New particle formation events were observed routinely at this site and nucleation mode composition measurements indicated that the newly formed particles were predominantly organic. These events likely contribute to the dominance of organic species at smaller sizes, where aerosol organic mass fractions of non-refractory components were between 70–90%. Corresponding aerosol hygroscopicity was observed to range from κ = 0.15–0.22, with hygroscopicity increasing with particle size. Aerosol chemical composition measured by an Aerosol Mass Spectrometer and calculated from hygroscopicity measurements agreed very well during the intensive study with an assumed value of κorg = 0.13 resulting in the best agreement.


Sign in / Sign up

Export Citation Format

Share Document