scholarly journals Supplementary material to "Assessing the impact of Clean Air Action Plan on Air Quality Trends in Beijing Megacity using a machine learning technique"

Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  
2019 ◽  
Vol 19 (17) ◽  
pp. 11303-11314 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A 5-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessment of this action plan is an essential part of the decision-making process to review its efficacy and to develop new policies. Both statistical and chemical transport modelling have been previously applied to assess the efficacy of this action plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we applied a machine-learning-based random forest technique to quantify the effectiveness of Beijing's action plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year-to-year variations in ambient air quality. Further analyses show that the PM2.5 mass concentration would have broken the target of the plan (2017 annual PM2.5<60 µg m−3) were it not for the meteorological conditions in winter 2017 favouring the dispersion of air pollutants. However, over the whole period (2013–2017), the primary emission controls required by the action plan have led to significant reductions in PM2.5, PM10, NO2, SO2, and CO from 2013 to 2017 of approximately 34 %, 24 %, 17 %, 68 %, and 33 %, respectively, after meteorological correction. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion. Our results indicate that the action plan has been highly effective in reducing the primary pollution emissions and improving air quality in Beijing. The action plan offers a successful example for developing air quality policies in other regions of China and other developing countries.


2019 ◽  
Author(s):  
Tuan V. Vu ◽  
Zongbo Shi ◽  
Jing Cheng ◽  
Qiang Zhang ◽  
Kebin He ◽  
...  

Abstract. A five-year Clean Air Action Plan was implemented in 2013 to reduce air pollutant emissions and improve ambient air quality in Beijing. Assessments of this Action Plan is an essential part of the decision-making process to review the efficacy of the Plan and to develop new policies. Both statistical and chemical transport modelling were applied to assess the efficacy of this Action Plan. However, inherent uncertainties in these methods mean that new and independent methods are required to support the assessment process. Here, we improved a novel machine learning-based random forest technique to quantify the effectiveness of Beijing's Acton Plan by decoupling the impact of meteorology on ambient air quality. Our results demonstrate that meteorological conditions have an important impact on the year to year variations in ambient air quality. Further analysis show that the favorable meteorological conditions in winter 2017 contributed to a lower PM2.5 mass concentration (58 μg m−3) than predicted from the random forest model (61 μg m−3), which is higher than the target of the Plan (2017 annual PM2.5 


2021 ◽  
Vol 40 (4) ◽  
pp. 694-702
Author(s):  
O.E. Aru ◽  
K.C. Adimora ◽  
F.J. Nwankwo

The advent of 5G has improved greatly the speed of data transmission in wireless mobile technology. On the other hand, it has put society in suspense due to ailments that came along with its deployment. Many attributed the emission of 5G radiation as the main cause of cancer today and that has led to the writing of this article paper. The research study employed a machine learning technique that is based on an artificial neural network in modeling the 5G wireless technology. MATLAB, Simulink was used to analyze the absorption and penetration level of 5G electromagnetic energy pattern into biological tissue Deoxyribonucleic Acid (DNA). Our research result revealed that the energy produced by 5G radiation at the non-ionizing region of the electromagnetic spectrum is small and cannot break into the chemical bonds of biological tissue Deoxyribonucleic Acid (DNA) or cause changes to cells that will result in either cancer or viral disease.


2021 ◽  
Author(s):  
Dixita Mali ◽  
Kritika Kumawat ◽  
Gaurav Kumawat ◽  
Prasun Chakrabarti ◽  
Sandeep Poddar ◽  
...  

Abstract Depression is an ordinary mental health care problem and the usual cause of disability worldwide. The main purpose of this research was to determine that how depression affects the life of an individual. It is a leading cause of morbidity and death. Over the last 50–60 years, large numbers of studies published various aspects including the impact of depression. The main purpose of this research is to determine whether the person is suffering from depression or not. The dataset of Depression has been taken from the Kaggle website. Guided Machine Learning classifiers have helped in the highest accuracy of a dataset. Classifiers like XGBoost Tree, Random Trees, Neural Network, SVM, Random Forest, C5.0, and Bay Net. From the result, it is evident that the C5.0 classifier is giving the highest accuracy with 83.94 % and for each classifier, the result is derived based without pre-processing.


Author(s):  
SV Yarushin ◽  
DV Kuzmin ◽  
AA Shevchik ◽  
TM Tsepilova ◽  
VB Gurvich ◽  
...  

Introduction: Key issues of assessing effectiveness and economic efficiency of implementing the Federal Clean Air Project by public health criteria are considered based on the example of the Comprehensive Emission Reduction Action Plan realized in the city of Nizhny Tagil, Sverdlovsk Region. Materials and methods: We elaborated method approaches and reviewed practical aspects of evaluating measures taken in 2018–2019 at key urban industrial enterprises accounting for 95 % of stationary source emissions. Results: Summary calculations of ambient air pollution and carcinogenic and non-carcinogenic inhalation health risks including residual risks, evaluation of the impact of air quality on urban mortality and morbidity rates, economic assessment of prevented morbidity and premature mortality cases have enabled us not only to estimate health effects but also to develop guidelines for development and implementation of actions aimed at enhancing effectiveness and efficiency of industrial emission reduction in terms of health promotion of the local population. Conclusions: We substantiate proposals for the necessity and sufficiency of taking remedial actions ensuring achievement of acceptable health risk levels as targets of the Comprehensive Emission Reduction Action Plan in Nizhny Tagil until 2024 and beyond.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Author(s):  
Fahad Taha AL-Dhief ◽  
Nurul Mu'azzah Abdul Latiff ◽  
Nik Noordini Nik Abd. Malik ◽  
Naseer Sabri ◽  
Marina Mat Baki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document