scholarly journals Assessing the formation and evolution mechanisms of severe haze pollution in Beijing−Tianjin−Hebei region by using process analysis

Author(s):  
Lei Chen ◽  
Jia Zhu ◽  
Hong Liao ◽  
Yi Gao ◽  
Yulu Qiu ◽  
...  

Abstract. Fine–particle pollution associated with haze threatens human health, especially in the North China Plain, where extremely high PM2.5 concentrations were frequently observed during winter. In this study, the WRF–Chem model coupled with an improved integrated process analysis scheme was used to investigate the formation and evolution mechanisms of a haze event happened over Beijing–Tianjin–Hebei (BTH) in December 2015, including examining the contributions of local emission and outside transport to the absolute PM2.5 concentration in BTH, and the contributions of each detailed physical or chemical process to the variations in the PM2.5 concentration. The influence mechanisms of aerosol radiative forcing (including aerosol direct and indirect effects) were also examined by using the process analysis. During the aerosol accumulation stage (December 20–22, Stage_1), the average near–surface PM2.5 concentration in BTH was 250.0 µg m−3, which was contributed by local emission of 42.3 % and outside transport of 36.6 %. During the aerosol dispersion stage (December 23–27, Stage_2), the average concentration of PM2.5 was 107.9 µg m−3. The contribution of local emission increased to 50.9 %, while the contribution of outside transport decreased to 24.3 %. The 24–h change (23:00LST minus 00:00LST) in the near–surface PM2.5 concentration was +50.4 µg m−3 during Stage_1 and −41.5 µg m−3 during Stage_2. Contributions of aerosol chemistry process and vertical mixing process to the 24–h change were +43.8 (+17.9) µg m−3 and −161.6 (−221.6) µg m−3 for Stage_1 (Stage_2), respectively. Small differences in contributions from other processes were found between Stage_1 and Stage_2, such as advection process, cloud chemistry process, and so on. Therefore, the PM2.5 increase over BTH during haze formation stage (Stage_1) was mainly attributed to strong production by aerosol chemistry process and weak removal by vertical mixing process. When aerosol radiative feedback was considered, the 24–h PM2.5 increase was enhanced by 9.6 µg m−3 during Stage_1, which could be mainly attributed to the contributions of vertical mixing process (+39.8 µg m−3), advection process (−38.6 µg m−3) and aerosol chemistry process (+5.1 µg m−3). The restrained vertical mixing could be the primary reason for the enhancement in near–surface PM2.5 increase when aerosol radiative forcing was considered.

2019 ◽  
Vol 19 (16) ◽  
pp. 10845-10864 ◽  
Author(s):  
Lei Chen ◽  
Jia Zhu ◽  
Hong Liao ◽  
Yi Gao ◽  
Yulu Qiu ◽  
...  

Abstract. Fine-particle pollution associated with haze threatens human health, especially in the North China Plain region, where extremely high PM2.5 concentrations are frequently observed during winter. In this study, the Weather Research and Forecasting with Chemistry (WRF-Chem) model coupled with an improved integrated process analysis scheme was used to investigate the formation and evolution mechanisms of a haze event over the Beijing–Tianjin–Hebei (BTH) region in December 2015; this included an examination of the contributions of local emissions and regional transport to the PM2.5 concentration in the BTH area, and the contributions of each detailed physical or chemical process to the variations in the PM2.5 concentration. The mechanisms influencing aerosol radiative forcing (including aerosol direct and indirect effects) were also examined by using process analysis. During the aerosol accumulation stage (16–22 December, Stage 1), the near-surface PM2.5 concentration in the BTH region increased from 24.2 to 289.8 µg m−3, with the contributions of regional transport increasing from 12 % to 40 %, while the contribution of local emissions decreased from 59 % to 38 %. During the aerosol dispersion stage (23–27 December, Stage 2), the average concentration of PM2.5 was 107.9 µg m−3, which was contributed by local emissions (51 %) and regional transport (24 %). The 24 h change (23:00 minus 00:00 LST) in the near-surface PM2.5 concentration was +43.9 µg m−3 during Stage 1 and −41.5 µg m−3 during Stage 2. The contributions of aerosol chemistry, advection, and vertical mixing to the 24 h change were +29.6 (+17.9) µg m−3, −71.8 (−103.6) µg m−3, and −177.3 (−221.6) µg m−3 during Stage 1 (Stage 2), respectively. Small differences in the contributions of other processes were found between Stage 1 and Stage 2. Therefore, the PM2.5 increase over the BTH region during the haze formation stage was mainly attributed to strong production by the aerosol chemistry process and weak removal by the advection and vertical mixing processes. When aerosol radiative feedback was considered, the 24 h PM2.5 increase was enhanced by 4.8 µg m−3 during Stage 1, which could be mainly attributed to the contributions of the vertical mixing process (+22.5 µg m−3), the advection process (−19.6 µg m−3), and the aerosol chemistry process (+1.2 µg m−3). The restrained vertical mixing was the primary reason for the enhancement in the near-surface PM2.5 increase when aerosol radiative forcing was considered.


2020 ◽  
Vol 20 (2) ◽  
pp. 1147-1161 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zhining Tao ◽  
Jiawei Li ◽  
Jeong-Eon Kang ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating wintertime haze events in the North China Plain region and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the participating models. Over the Beijing–Tianjin–Hebei (BTH) region, the ensemble mean of estimated aerosol direct radiative forcing (ADRF) at the top of atmosphere, inside the atmosphere, and at the surface are −1.1, 7.7, and −8.8 W m−2 during January 2010, respectively. Subdivisions of direct and indirect aerosol radiative forcing confirm the dominant role of direct forcing. During severe haze days (17–19 January 2010), the averaged reduction in near-surface temperature for the BTH region can reach 0.3–1.6 ∘C. The responses of wind speeds at 10 m (WS10) inferred from different models show consistent declines in eastern China. For the BTH region, aerosol–radiation feedback-induced daytime changes in PM2.5 concentrations during severe haze days range from 6.0 to 12.9 µg m−3 (<6 %). Sensitivity simulations indicate the important effect of aerosol mixing states on the estimates of ADRF and aerosol feedbacks. Besides, black carbon (BC) exhibits a large contribution to atmospheric heating and feedbacks although it accounts for a small share of mass concentration of PM2.5.


2019 ◽  
Author(s):  
Meng Gao ◽  
Zhiwei Han ◽  
Zhining Tao ◽  
Jiawei Li ◽  
Jeong-Eon Kang ◽  
...  

Abstract. Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models. Over the Beijing-Tianjin-Hebei (BTH) region, the ensemble mean of aerosol direct radiative forcing (ADRF) at the top of atmosphere, inside the atmosphere and at the surface are −1.9, 8.4 and −10.3 W/m2, respectively. Subdivisions of direct and indirect aerosol radiative forcing confirm the dominant roles of direct forcing. During severe haze days (January 17–19, 2010), the averaged reduction in near surface temperature for the BTH region can reach 0.3–3.0 ºC. The responses of wind speeds at 10 m (WS10) inferred from different models show consistent declines in eastern China. For the BTH region, aerosol-radiation feedback induced changes in PM2.5 range from 6.0 to 8.8 µg/m3 (


2019 ◽  
Vol 46 (7) ◽  
pp. 4039-4048 ◽  
Author(s):  
S. T. Turnock ◽  
G. W. Mann ◽  
M. T. Woodhouse ◽  
M. Dalvi ◽  
F. M. O'Connor ◽  
...  

2004 ◽  
Vol 31 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
G. Pandithurai ◽  
R. T. Pinker ◽  
T. Takamura ◽  
P. C. S. Devara

2002 ◽  
Vol 29 (18) ◽  
pp. 27-1-27-4 ◽  
Author(s):  
S. Suresh Babu ◽  
S. K. Satheesh ◽  
K. Krishna Moorthy

2011 ◽  
Vol 32 (22) ◽  
pp. 7827-7845 ◽  
Author(s):  
Atul K. Srivastava ◽  
P. Pant ◽  
P. Hegde ◽  
Sachchidanand Singh ◽  
U. C. Dumka ◽  
...  

2006 ◽  
Vol 45 (4) ◽  
pp. 770 ◽  
Author(s):  
Manfred Wendisch ◽  
Detlef Müller ◽  
Ina Mattis ◽  
Albert Ansmann

Sign in / Sign up

Export Citation Format

Share Document