scholarly journals Supplementary material to "Global response of parameterised convective cloud fields to anthropogenic aerosol forcing"

Author(s):  
Zak Kipling ◽  
Laurent Labbouz ◽  
Philip Stier
2020 ◽  
Vol 20 (23) ◽  
pp. 15285-15295
Author(s):  
Klaus Klingmüller ◽  
Vlassis A. Karydis ◽  
Sara Bacer ◽  
Georgiy L. Stenchikov ◽  
Jos Lelieveld

Abstract. The interactions between aeolian dust and anthropogenic air pollution, notably chemical ageing of mineral dust and coagulation of dust and pollution particles, modify the atmospheric aerosol composition and burden. Since the aerosol particles can act as cloud condensation nuclei, this affects the radiative transfer not only directly via aerosol–radiation interactions, but also indirectly through cloud adjustments. We study both radiative effects using the global ECHAM/MESSy atmospheric chemistry-climate model (EMAC) which combines the Modular Earth Submodel System (MESSy) with the European Centre/Hamburg (ECHAM) climate model. Our simulations show that dust–pollution–cloud interactions reduce the condensed water path and hence the reflection of solar radiation. The associated climate warming outweighs the cooling that the dust–pollution interactions exert through the direct radiative effect. In total, this results in a net warming by dust–pollution interactions which moderates the negative global anthropogenic aerosol forcing at the top of the atmosphere by (0.2 ± 0.1) W m−2.


2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


2019 ◽  
Author(s):  
Stefan Kinne

Abstract. onthly global maps for aerosol properties of the MACv2 climatology are applied in an off-line radiative transfer model to determine aerosol radiative effects. For details beyond global averages in most cases global maps are presented to visualize regional and seasonal details. Aside from the direct radiative (aerosol presence) effect, including those for aerosol components as extracted from MACv2 aerosol optics, also the major aerosol indirect radiative effect is covered. Hereby, the impact of smaller drops in water clouds due to added anthropogenic aerosol was simulated by applying a satellite retrieval based fit from locally associations between aerosol and drop concentrations over oceans. Present-day anthropogenic aerosols of MACv2 – on a global average basis – reduce the radiative net-fluxes at the top of the atmosphere (TOA) by −1.0 W/m2 and at the surface by −2.1 W/m2. Direct cooling contributions are only about half of indirect contributions (−.35 vs −.65) at TOA, but about twice at the surface (−1.45 vs −.65), as solar absorption of the direct effect warms the atmosphere by +1.1 W/m2. Natural aerosols are on average less absorbing (for a relatively larger solar TOA cooling) and larger in size (now contributing with IR greenhouse warming). Thus, average TOA direct forcing efficiencies for total and anthropogenic aerosol happen to be similar: −11 W/m2/AOD at all-sky and −24 W/m2/AOD at clear-sky conditions. The present-day direct impact by all soot (BC) is globally averaged +0.55W/m2 and at least half of it should be attributed to anthropogenic sources. Hereby any accuracy of anthropogenic impacts, not just for soot, suffers from the limited access to a pre-industrial reference. Anthropogenic uncertainty has a particular strong impact on aerosol indirect effects, which dominate the (TOA) forcing. Accounting for uncertainties in the anthropogenic definition, present-day aerosol forcing is estimated to stay within the −0.7 to −1.6 W/m2 range, with a best estimate at −1 W/m2. Calculations with model predicted temporal changes to anthropogenic AOD indicate that qualitatively the anthropogenic aerosol forcing has not changed much over the last decades and is not likely to increase over the next decades, despite strong regional shifts. These regional shifts explain most solar insolation (brightening or dimming) trends that have been observed by ground-based radiation data.


Sign in / Sign up

Export Citation Format

Share Document