scholarly journals Snow-induced buffering in aerosol–cloud interactions

2020 ◽  
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Toshihiko Takemura

Abstract. Complex aerosol–cloud–precipitation interactions lead to large differences in estimates of aerosol impacts on climate among general circulation models (GCMs) and satellite retrievals. Typically, precipitating hydrometeors are treated diagnostically in most GCMs, and their radiative effects are ignored. Here, we quantify how the treatment of precipitation influences the simulated effective radiative forcing due to aerosol–cloud interactions (ERFaci) using a state-of-the-art GCM with a two-moment prognostic precipitation scheme that incorporates the radiative effect of precipitating particles, and investigate how microphysical process representations are related to macroscopic climate effects. Prognostic precipitation substantially weakens the magnitude of ERFaci (by approximately 75 %) compared with the traditional diagnostic scheme, and this is the result of the increased longwave (warming) and weakened shortwave (cooling) components of ERFaci. The former is attributed to additional adjustment processes induced by falling snow, and the latter stems largely from riming of snow by collection of cloud droplets. The significant reduction in ERFaci does not occur without prognostic snow, which contributes mainly by buffering the cloud response to aerosol perturbations through depleting cloud water via collection. Prognostic precipitation also alters the regional pattern of ERFaci, particularly over northern mid-latitudes where snow is abundant. The treatment of precipitation is thus a highly influential controlling factor of ERFaci, contributing more than other uncertain tunable processes related to aerosol–cloud–precipitation interactions. This change in ERFaci caused by the treatment of precipitation is large enough to explain the existing difference in ERFaci between GCMs and observations.

2020 ◽  
Vol 20 (22) ◽  
pp. 13771-13780
Author(s):  
Takuro Michibata ◽  
Kentaroh Suzuki ◽  
Toshihiko Takemura

Abstract. Complex aerosol–cloud–precipitation interactions lead to large differences in estimates of aerosol impacts on climate among general circulation models (GCMs) and satellite retrievals. Typically, precipitating hydrometeors are treated diagnostically in most GCMs, and their radiative effects are ignored. Here, we quantify how the treatment of precipitation influences the simulated effective radiative forcing due to aerosol–cloud interactions (ERFaci) using a state-of-the-art GCM with a two-moment prognostic precipitation scheme that incorporates the radiative effect of precipitating particles, and we investigate how microphysical process representations are related to macroscopic climate effects. Prognostic precipitation substantially weakens the magnitude of ERFaci (by approximately 54 %) compared with the traditional diagnostic scheme, and this is the result of the increased longwave (warming) and weakened shortwave (cooling) components of ERFaci. The former is attributed to additional adjustment processes induced by falling snow, and the latter stems largely from riming of snow by collection of cloud droplets. The significant reduction in ERFaci does not occur without prognostic snow, which contributes mainly by buffering the cloud response to aerosol perturbations through depleting cloud water via collection. Prognostic precipitation also alters the regional pattern of ERFaci, particularly over northern midlatitudes where snow is abundant. The treatment of precipitation is thus a highly influential controlling factor of ERFaci, contributing more than other uncertain “tunable” processes related to aerosol–cloud–precipitation interactions. This change in ERFaci caused by the treatment of precipitation is large enough to explain the existing difference in ERFaci between GCMs and observations.


2016 ◽  
Vol 113 (21) ◽  
pp. 5812-5819 ◽  
Author(s):  
Graham Feingold ◽  
Allison McComiskey ◽  
Takanobu Yamaguchi ◽  
Jill S. Johnson ◽  
Kenneth S. Carslaw ◽  
...  

The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system.


2004 ◽  
Vol 4 (5) ◽  
pp. 6823-6836 ◽  
Author(s):  
C. Luo

Abstract. Long-term and large-scale correlations between Advanced Very High-Resolution Radiometer (AVHRR) aerosol optical depth and International Satellite Cloud Climatology Project (ISCCP) monthly cloud amount data show significant regional scale relationships between cloud amount and aerosols, consistent with aerosol-cloud interactions. Positive correlations between aerosols and cloud amount are associated with North American and Asian aerosols in the North Atlantic and Pacific storm tracks, and mineral aerosols in the tropical North Atlantic. Negative correlations are seen near biomass burning regions of North Africa and Indonesia, as well as south of the main mineral aerosol source of North Africa. These results suggest that there are relationships between aerosols and clouds in the observations that can be used by general circulation models to verify the correct forcing mechanisms for both direct and indirect radiative forcing by clouds.


2016 ◽  
Vol 113 (21) ◽  
pp. 5781-5790 ◽  
Author(s):  
John H. Seinfeld ◽  
Christopher Bretherton ◽  
Kenneth S. Carslaw ◽  
Hugh Coe ◽  
Paul J. DeMott ◽  
...  

The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.


2020 ◽  
Vol 20 (10) ◽  
pp. 6225-6241 ◽  
Author(s):  
Alyson Douglas ◽  
Tristan L'Ecuyer

Abstract. Aerosol–cloud interactions and their resultant forcing remains one of the largest sources of uncertainty in future climate scenarios. The effective radiative forcing due to aerosol–cloud interactions (ERFaci) is a combination of two different effects, namely how aerosols modify cloud brightness (RFaci, intrinsic) and how cloud extent reacts to aerosol (cloud adjustments CA; extrinsic). Using satellite observations of warm clouds from the NASA A-Train constellation from 2007 to 2010 along with MERRA-2 Reanalysis and aerosol from the SPRINTARS model, we evaluate the ERFaci in warm, marine clouds and its components, the RFaciwarm and CAwarm, while accounting for the liquid water path and local environment. We estimate the ERFaciwarm to be -0.32±0.16 Wm−2. The RFaciwarm dominates the ERFaciwarm contributing 80 % (-0.21±0.15 Wm−2), while the CAwarm enhances this cooling by 20 % (-0.05±0.03 Wm−2). Both the RFaciwarm and CAwarm vary in magnitude and sign regionally and can lead to opposite, negating effects under certain environmental conditions. Without considering the two terms separately and without constraining cloud–environment interactions, weak regional ERFaciwarm signals may be erroneously attributed to a damped susceptibility to aerosol.


2015 ◽  
Vol 15 (1) ◽  
pp. 153-172 ◽  
Author(s):  
M. C. Wyant ◽  
C. S. Bretherton ◽  
R. Wood ◽  
G. R. Carmichael ◽  
A. Clarke ◽  
...  

Abstract. A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.


2014 ◽  
Vol 14 (19) ◽  
pp. 26721-26764
Author(s):  
A. Possner ◽  
E. Zubler ◽  
U. Lohmann ◽  
C. Schär

Abstract. Ship tracks provide an ideal test bed for studying aerosol-cloud interactions (ACI) and for evaluating their representation in parameterisations. Regional modelling can be of particular use for this task, as this approach provides sufficient resolution to resolve the structure of the produced track including their meteorological environment whilst relying on the same formulations of parameterisations as many general circulation models. In this work we simulate a particular case of ship tracks embedded in an optically thin stratus cloud sheet which was observed by a polar orbiting satellite at 12:00 UTC on 26 January 2003 around the Bay of Biscay. The simulations which include moving ship emissions show that the model is indeed able to capture the structure of the track at a horizontal grid spacing of 2 km and to qualitatively capture the observed cloud response in all simulations performed. At least a doubling of the cloud optical thickness was simulated in all simulations together with an increase in cloud droplet number concentration (by about 50 cm−3) and decrease in effective radius (by about 5 μm). Furthermore the ship emissions lead to an increase in liquid water path in at least 25% of the track regions. We are confident in the model's ability to capture key processes of ship track formation. However, it was found that realistic ship emissions lead to unrealistic aerosol perturbations near the source regions within the simulated tracks due to grid-scale dilution and homogeneity. Combining the regional-modelling approach with comprehensive field studies could likely improve our understanding of the sensitivities and biases in ACI parameterisations, and could therefore help to constrain global ACI estimates, which strongly rely on these parameterisations.


2018 ◽  
Vol 18 (19) ◽  
pp. 14681-14693 ◽  
Author(s):  
Lei Liu ◽  
Jian Zhang ◽  
Liang Xu ◽  
Qi Yuan ◽  
Dao Huang ◽  
...  

Abstract. Aerosol–cloud interactions remain a major source of uncertainty in climate forcing estimates. Few studies have been conducted to characterize the aerosol–cloud interactions in heavily polluted conditions worldwide. In this study, cloud residual and cloud interstitial particles were collected during cloud events under different pollution levels from 22 July to 1 August 2014 at Mt. Tai (1532 m above sea level) located in the North China Plain (NCP). A transmission electron microscope was used to investigate the morphology, size, and chemical composition of individual cloud residual and cloud interstitial particles, and to study mixing properties of different aerosol components in individual particles. Our results show that S-rich particles were predominant (78 %) during clean periods (PM2.5<15 µg m−3), but a large number of anthropogenic refractory particles (e.g., soot, fly ash, and metal) and their mixtures with S-rich particles (defined as “S-refractory”) were observed during polluted periods. Cloud droplets collected during polluted periods were found to become an extremely complicated mixture by scavenging abundant refractory particles. We found that 76 % of cloud residual particles were S-refractory particles and that 26 % of cloud residual particles contained two or more types of refractory particles. Soot-containing particles (i.e., S-soot and S-fly ash/metal-soot) were the most abundant (62 %) among cloud residual particles, followed by fly ash/metal-containing particles (i.e., S-fly ash/metal and S-fly ash/metal-soot, 37 %). These complicated cloud droplets have not been reported in clean continental or marine air before. Our findings provide an insight into the potential impacts on cloud radiative forcing from black carbon and metal catalyzed reactions of SO2 in micro-cloud droplets containing soluble metals released from fly ash and metals over polluted air.


2015 ◽  
Vol 15 (4) ◽  
pp. 2185-2201 ◽  
Author(s):  
A. Possner ◽  
E. Zubler ◽  
U. Lohmann ◽  
C. Schär

Abstract. Ship tracks provide an ideal test bed for studying aerosol–cloud interactions (ACIs) and for evaluating their representation in model parameterisations. Regional modelling can be of particular use for this task, as this approach provides sufficient resolution to resolve the structure of the produced track including their meteorological environment whilst relying on the same formulations of parameterisations as many general circulation models. In this work we simulate a particular case of ship tracks embedded in an optically thin stratus cloud sheet which was observed by a polar orbiting satellite at 12:00 UTC on 26 January 2003 around the Bay of Biscay. The simulations, which include moving ship emissions, show that the model is indeed able to capture the structure of the track at a horizontal grid spacing of 2 km and to qualitatively capture the observed cloud response in all simulations performed. At least a doubling of the cloud optical thickness was simulated in all simulations together with an increase in cloud droplet number concentration by about 40 cm−3 (300%) and decrease in effective radius by about 5 μm (40%). Furthermore, the ship emissions lead to an increase in liquid water path in at least 25% of the track regions. We are confident in the model's ability to capture key processes of ship track formation. However, it was found that realistic ship emissions lead to unrealistic aerosol perturbations near the source regions within the simulated tracks due to grid-scale dilution and homogeneity. Combining the regional-modelling approach with comprehensive field studies could likely improve our understanding of the sensitivities and biases in ACI parameterisations, and could therefore help to constrain global ACI estimates, which strongly rely on these parameterisations.


2021 ◽  
Author(s):  
Laura Wilcox ◽  
Paul Griffiths ◽  
Daniel Grosvenor ◽  
James Keeble ◽  
Jon Robson

&lt;p&gt;Previous studies have shown that anthropogenic aerosol emissions drive a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in CMIP6 historical simulations that was not simulated in the CMIP5 multi-model mean. The strength of the CMIP6 AMOC trend has been linked to the strength of the aerosol forcing, with the inclusion of aerosol-cloud interactions accounting for a large proportion of the difference between CMIP5 and CMIP6. However, there is large uncertainty in the magnitude and distribution of aerosol effective radiative forcing in CMIP6. Understanding this uncertainty is important for the interpretation of simulated AMOC variability.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We present an evaluation of the atmospheric variables with the potential to influence AMOC changes in CMIP6 historical and AMIP simulations, including downwelling shortwave radiation, surface heat fluxes, surface air temperature, and precipitation. We examine the links between aerosol effective radiative forcing, the magnitude and pattern of biases in the mean and trends in modelled quantities, and the complexity of the representation of aerosol chemistry and aerosol-cloud interactions. Using these results, we highlight areas where model diversity in the representation of aerosol process may be particularly important for uncertainty in simulations of North Atlantic climate. &lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document