scholarly journals A global model perturbed parameter ensemble study of secondary organic aerosol formation

2020 ◽  
Author(s):  
Kamalika Sengupta ◽  
Kirsty Pringle ◽  
Jill S. Johnson ◽  
Carly Reddington ◽  
Jo Browse ◽  
...  

Abstract. A global model perturbed parameter ensemble of 60 simulations was used to explore how combinations of six parameters related to secondary organic aerosol (SOA) formation affect particle number concentrations and organic aerosol mass. The parameters represent the formation of organic compounds with different volatilities from biogenic and anthropogenic sources. The most plausible parameter combinations were determined by comparing the simulations against observations of the number concentration of particles larger than 3 nm diameter (N3), the number concentration of particles larger than 50 nm diameter (N50), and the organic aerosol (OA) mass concentration. The simulations expose a high degree of model equifinality in which the skill of widely different parameter combinations cannot be distinguished against observations. We therefore conclude that, based on the observations we have used, a 6-parameter SOA scheme is under-determined. Nevertheless, the model skill in simulating N3 and N50 is clearly determined by the low and extremely low volatility compounds that affect new particle formation and growth, and the skill in simulating OA mass is determined by the low volatility and semi-volatile compounds. The biogenic low volatility class of compounds that grow nucleated clusters and condense on all particles is found to have the strongest effect on the model skill in simulating N3, N50 and OA. The simulations also expose potential structural deficiencies in the model: we find that parameter combinations that are best for N3 and N50 are worst for OA mass, and the ensemble exaggerates the observed seasonal cycle of particle concentrations – a deficiency that we conclude requires an additional anthropogenic source of either primary or secondary particles.

2021 ◽  
Vol 21 (4) ◽  
pp. 2693-2723
Author(s):  
Kamalika Sengupta ◽  
Kirsty Pringle ◽  
Jill S. Johnson ◽  
Carly Reddington ◽  
Jo Browse ◽  
...  

Abstract. A global model perturbed parameter ensemble of 60 simulations was used to explore how combinations of six parameters related to secondary organic aerosol (SOA) formation affect particle number concentrations and organic aerosol mass. The parameters represent the formation of organic compounds with different volatilities from biogenic and anthropogenic sources. The most plausible parameter combinations were determined by comparing the simulations against observations of the number concentration of particles larger than 3 nm diameter (N3), the number concentration of particles larger than 50 nm diameter (N50), and the organic aerosol (OA) mass concentration. The simulations expose a high degree of model equifinality in which the skill of widely different parameter combinations cannot be distinguished against observations. We therefore conclude that, based on the observations we have used, a six-parameter SOA scheme is under-determined. Nevertheless, the model skill in simulating N3 and N50 is clearly determined by the low-volatility and extremely low-volatility compounds that affect new particle formation and growth, and the skill in simulating OA mass is determined by the low-volatility and semi-volatile compounds. The biogenic low-volatility class of compounds that grow nucleated clusters and condense on all particles is found to have the strongest effect on the model skill in simulating N3, N50, and OA. The simulations also expose potential structural deficiencies in the model: we find that parameter combinations that are best for N3 and N50 are worst for OA mass, and the ensemble exaggerates the observed seasonal cycle of particle concentrations – a deficiency that we conclude requires an additional anthropogenic source of either primary or secondary particles.


2017 ◽  
Vol 17 (12) ◽  
pp. 7757-7773 ◽  
Author(s):  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Imad El-Haddad ◽  
Urs Baltensperger ◽  
André S. H. Prévôt

Abstract. Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February–March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we also examined contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau.


2016 ◽  
Author(s):  
Sebnem Aksoyoglu ◽  
Giancarlo Ciarelli ◽  
Imad El-Haddad ◽  
Urs Baltensperger ◽  
André S. H Prévôt

Abstract. Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (Comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns (February–March 2009 and June 2006), which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations leading to significant changes in inorganic nitrate and sulfate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two) while particulate inorganic nitrate concentrations decreased by up to 35 %. Sulfate concentrations decreased as well, the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7), whereas combustion in energy and transformation industries (SNAP1) was the most important contributor to sulfate particulate mass. Emissions from international shipping were also found to be very important for both nitrate and sulfate formation in Europe. In addition, we examined also contributions from the geographical source regions to SIA concentrations in the most densely populated region of Switzerland, the Swiss Plateau. The results suggest that sources of particulate sulfate were mostly of foreign origin (the domestic contributions were 11 % and 3 % in winter and summer, respectively). On the other hand, about 20 % of the particulate nitrate was from domestic sources while contributions from the neighboring countries Germany and France were significant as well. Particulate ammonium was estimated to originate mainly from local agricultural activities.


2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


2008 ◽  
Vol 8 (4) ◽  
pp. 16585-16608 ◽  
Author(s):  
M. E. Erupe ◽  
D. J. Price ◽  
P. J. Silva ◽  
Q. G. J. Malloy ◽  
L. Qi ◽  
...  

Abstract. Secondary organic aerosol formation from the reaction of tertiary amines with nitrate radical was investigated in an indoor environmental chamber. Particle chemistry was monitored using a high resolution aerosol mass spectrometer while gas-phase species were detected using a proton transfer reaction mass spectrometer. Trimethylamine, triethylamine and tributylamine were studied. Results indicate that tributylamine forms the most aerosol mass followed by trimethylamine and triethylamine respectively. Spectra from the aerosol mass spectrometer indicate the formation of complex non-salt aerosol products. We propose a reaction mechanism that proceeds via abstraction of a proton by nitrate radical followed by RO2 chemistry. Rearrangement of the aminyl alkoxy radical through hydrogen shift leads to the formation of hydroxylated amides, which explain most of the higher mass ions in the mass spectra. These experiments show that oxidation of tertiary amines by nitrate radical may be an important night-time source of secondary organic aerosol.


2012 ◽  
Vol 12 (24) ◽  
pp. 11795-11817 ◽  
Author(s):  
J. S. Craven ◽  
L. D. Yee ◽  
N. L. Ng ◽  
M. R. Canagaratna ◽  
C. L. Loza ◽  
...  

Abstract. Positive matrix factorization (PMF) of high-resolution laboratory chamber aerosol mass spectra is applied for the first time, the results of which are consistent with molecular level MOVI-HRToF-CIMS aerosol-phase and CIMS gas-phase measurements. Secondary organic aerosol was generated by photooxidation of dodecane under low-NOx conditions in the Caltech environmental chamber. The PMF results exhibit three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. The slope of the measured high-resolution aerosol mass spectrometer (HR-ToF-AMS) composition data on a Van Krevelen diagram is consistent with that of other low-NOx alkane systems in the same O : C range. Elemental analysis of the PMF factor mass spectral profiles elucidates the combinations of functionality that contribute to the slope on the Van Krevelen diagram.


2009 ◽  
Vol 9 (1) ◽  
pp. 1873-1905
Author(s):  
A. W. H. Chan ◽  
K. E. Kautzman ◽  
P. S. Chhabra ◽  
J. D. Surratt ◽  
M. N. Chan ◽  
...  

Abstract. Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m


2012 ◽  
Vol 12 (2) ◽  
pp. 6019-6047 ◽  
Author(s):  
A. K. Y. Lee ◽  
K. L. Hayden ◽  
P. Herckes ◽  
W. R. Leaitch ◽  
J. Liggio ◽  
...  

Abstract. The water-soluble fractions of aerosol samples and cloud water collected during Whistler Aerosol and Cloud Study (WACS 2010) were analyzed using an Aerodyne aerosol mass spectrometer (AMS). This is the first study to report AMS organic spectra of re-aerosolized cloud water, and to make direct comparison between the AMS spectra of cloud water and aerosol samples collected at the same location. In general, the aerosol and cloud organic spectra were very similar, indicating that the cloud water organics likely originated from secondary organic aerosol (SOA) formed nearby. By using a photochemical reactor to oxidize both aerosol filter extracts and cloud water, we find evidence that fragmentation of aerosol water-soluble organics increases their volatility during oxidation. By contrast, enhancement of AMS-measurable organic mass by up to 30% was observed during aqueous-phase photochemical oxidation of cloud water organics. We propose that additional SOA material was produced by functionalizing dissolved organics via OH oxidation, where these dissolved organics are sufficiently volatile that they are not usually part of the aerosol. This work points out that water-soluble organic compounds of intermediate volatility (IVOC), such as cis-pinonic acid, produced via gas-phase oxidation of monoterpenes, can be important aqueous-phase SOA precursors in a biogenic-rich environment.


2014 ◽  
Vol 14 (16) ◽  
pp. 22507-22545 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
F. Siekmann ◽  
C. Giorio ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. First- and higher-generation products from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber: (1) significant oxidation rates have been maintained for up to 7 h allowing the study of highly oxidized products, (2) gas-phase products distribution and yields are provided, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation resulting from these experiments has also been investigated. Among the general dispersion exhibited by SOA mass yields from previous studies, the mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission spectrum similar to the solar one. An effect of light source is hence proposed to explain, at least in part, the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. A high degree of similarity is shown in the comparison of SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e. presence of NOx and long term oxidation). Overall, if these results are further confirmed, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.


2016 ◽  
Author(s):  
Andelija Milic ◽  
Marc D. Mallet ◽  
Luke T. Cravigan ◽  
Joel Alroe ◽  
Zoran D. Ristovski ◽  
...  

Abstract. There is a lack of knowledge of how biomass burning aerosols in the tropics age, including those in the fire-prone Northern Territory in Australia. This paper reports chemical characterization and aging of aerosols monitored during the one month long SAFIRED (Savannah Fires in the Early Dry Season) field study, with an emphasis on chemical signature and aging of organic aerosols. The campaign took place in June 2014 during the early dry season when the surface measurement site, the Australian Tropical Atmospheric Research Station (ATARS), located in the Northern Territory, was heavily influenced by thousands of wild and prescribed bushfires. ATARS was equipped with a wide suite of instrumentation for gaseous and aerosol characterization. A compact time-of-flight aerosol mass spectrometer was deployed to monitor aerosol chemical composition. Approximately 80 % of submicron carbonaceous mass and 90 % of submicron non-refractory mass was composed of organic material. Ozone enhancement in biomass burning plumes indicated increased air mass photochemistry and increased organic aerosol and particle diameter with the aging parameter (f44) suggested secondary organic aerosol formation. Diversity of biomass burning emissions was illustrated through variability in chemical signature (e.g. wide range in f44, from 0.06 to 0.13) for five intense fire events. The background particulate loading was characterized using Positive Matrix Factorization (PMF). A PMF-resolved BBOA (biomass burning organic aerosol) factor comprised 24 % of the submicron non-refractory organic aerosol mass, confirming the significance of fire sources. A dominant PMF factor, OOA (oxygenated organic aerosol), made up 47 % of sampled aerosol fraction, illustrating the importance of aerosol aging in the Northern Territory. Biogenic IEPOX-SOA (isoprene epoxydiols-related secondary organic aerosol) was the third significant fraction of the background aerosol (28 %).


Sign in / Sign up

Export Citation Format

Share Document