scholarly journals Supplementary material to "Long-range transport of anthropogenic air pollutants into the marine air: Insight into fine particle transport and chloride depletion on sea salts"

Author(s):  
Liang Xu ◽  
Xiaohuan Liu ◽  
Huiwang Gao ◽  
Xiaohong Yao ◽  
Daizhou Zhang ◽  
...  
2021 ◽  
Vol 21 (23) ◽  
pp. 17715-17726
Author(s):  
Liang Xu ◽  
Xiaohuan Liu ◽  
Huiwang Gao ◽  
Xiaohong Yao ◽  
Daizhou Zhang ◽  
...  

Abstract. Long-range transport of anthropogenic air pollutants from East Asia can affect the downwind marine air quality during spring and winter. Long-range transport of continental air pollutants and their interaction with sea salt aerosol (SSA) significantly modify the radiative forcing of marine aerosols and influence ocean biogeochemical cycling. Previous studies poorly characterize variations of aerosol particles along with air mass transport from the continental edge to the remote ocean. Here, the research ship R/V Dongfanghong 2 traveled from the eastern China seas (ECS) to the northwestern Pacific Ocean (NWPO) to understand what and how air pollutants were transported from the highly polluted continental air to clean marine air in spring. A transmission electron microscope (TEM) was used to find the long-range transported anthropogenic particles and the possible Cl-depletion phenomenon of SSA in marine air. Anthropogenic aerosols (e.g., sulfur (S)-rich, S-soot, S-metal/fly ash, organic matter (OM)-S, and OM coating particles) were identified and dramatically declined from 87 % to 8 % by number from the ECS to remote NWPO. For the SSA aging, 87 % of SSA particles in the ECS were identified as fully aged, while the proportion of fully aged SSA particles in the NWPO decreased to 29 %. Our results highlight that anthropogenic acidic gases in the troposphere (e.g., SO2, NOx, and volatile organic compounds) could be transported to remote marine air and exert a significant impact on aging of SSA particles in the NWPO. The study shows that anthropogenic particles and gases from East Asia significantly perturb different aerosol chemistry from coastal to remote marine air. More attention should be given to the modification of SSA particles in remote marine areas due to the influence of anthropogenic gaseous pollutants.


2021 ◽  
Author(s):  
Liang Xu ◽  
Xiaohuan Liu ◽  
Huiwang Gao ◽  
Xiaohong Yao ◽  
Daizhou Zhang ◽  
...  

Abstract. Long-range transport of anthropogenic air pollutants from East Asia can affect the downwind marine air quality during spring and winter. Long-range transport of continental air pollutants and their interaction with sea salt aerosols (SSA) significantly modify the radiative forcing of marine aerosols and influence ocean biogeochemical cycling. Previous studies poorly characterize variations of aerosol particles along with air mass transport from the continental edge to the remote ocean. Here, the research ship R/V Dongfanghong 2 traveled from the eastern China seas (ECS) to the northwestern Pacific Ocean (NWPO) to understand what and how air pollutants were transported from the highly polluted continental air to clean marine air in spring. A transmission electron microscope (TEM) was used to find the long-range transported anthropogenic particles and the possible Cl-depletion phenomenon of SSA in marine air. Primary and secondary anthropogenic aerosols were identified and dramatically declined from 87 % to 8 % by number from the ECS to remote NWPO. For the SSA aging, 86 % of SSA particles in the ECS were identified as fully aged, while the proportion of fully aged SSA particles in the NWPO decreased to 31 %. The result highlights that anthropogenic acidic gases in the troposphere (e.g., SO2, NOx, and volatile organic compounds) were transported longer distances compared to the anthropogenic aerosol and could exert a significant impact on marine aerosols in the NWPO. These results show that anthropogenic particles and gases from East Asia significantly perturb aerosol chemistry in marine air. The optical properties and cloud condensation nucleation of the modified SSA particles should be incorporated into the more accurately modeling of clouds in the ECS and NWPO in spring and winter.


2017 ◽  
Vol 17 (21) ◽  
pp. 13233-13263 ◽  
Author(s):  
Uri Dayan ◽  
Philippe Ricaud ◽  
Régina Zbinden ◽  
François Dulac

Abstract. The eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane, and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatiotemporal distribution of the mixed boundary layer during summer, is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, led to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g., ventilation rates) and regional peculiarities (long-range transport) enhancing the build-up of air pollutant concentrations are presented. Tropospheric ozone (O3) concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long-range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of O3 over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite-derived data have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM, is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH) and therefore demonstrates high concentrations over winter months and the lowest concentrations during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from European anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements, are coherent with other previous studies. Moreover, this methane study provides some insight into the role of the Asian monsoon anticyclone in controlling the variability of CH4 pollutant within mid-to-upper tropospheric levels above the EM in summer.


2015 ◽  
Vol 37 (1) ◽  
Author(s):  
Souleymane Coulibaly ◽  
Hiroki Minami ◽  
Maho Abe ◽  
Tomohiro Hasei ◽  
Tadashi Oro ◽  
...  

2017 ◽  
Author(s):  
Uri Dayan ◽  
Philippe Ricaud ◽  
Regina Zbinden ◽  
Francois Dulac

Abstract. The Eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatio-temporal distribution of the mixed boundary layer during summer is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, lead to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g. ventilation rates) and regional peculiarities (long-range transport) enhancing the building up of pollutant concentrations are presented. Tropospheric ozone concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long- range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of ozone over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite derived data, have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH), and therefore demonstrates high concentrations over winter months and the lowest during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from European anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemical and Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements is coherent with other previous studies. Moreover, this methane study provides some insights on the role of the Asian monsoon anticyclone in controlling the variability of CH4 pollutant within mid-to-upper tropospheric levels above the EM in summer.


2016 ◽  
Vol 141 ◽  
pp. 30-40 ◽  
Author(s):  
Indra Chandra ◽  
Seyoung Kim ◽  
Takafumi Seto ◽  
Yoshio Otani ◽  
Akinori Takami ◽  
...  

2007 ◽  
Vol 7 (13) ◽  
pp. 3587-3596 ◽  
Author(s):  
J. Y. Lee ◽  
Y. P. Kim

Abstract. Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul, Korea, is a megacity in Northeast Asia. Its emissions of air pollutants can affect the region, and in turn it is also affected by regional emissions. To understand the extent of these influences, major sources of ambient particulate PAHs in Seoul were identified and quantified based on measurements made between August 2002 and December 2003. The chemical mass balance (CMB) model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, residential coal use, coke ovens, coal power plants, biomass burning, and natural gas (NG) combustion. The major sources of particulate PAHs in Seoul during the whole measurement period were gasoline and diesel vehicles, together accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct daily and seasonal variations. High contributions of biomass burning and coal (residential and coke oven) were observed in fall and winter, accounting for 63% and 82% of the total concentration of PAHs, respectively. Since these sources were not strong in and around Seoul, they are likely to be related to transport from outside of Seoul, from China and/or North Korea. This implies that the air quality in a mega-city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.


Sign in / Sign up

Export Citation Format

Share Document