scholarly journals Long Range Prediction and the Stratosphere

2021 ◽  
Author(s):  
Adam A. Scaife ◽  
Mark P. Baldwin ◽  
Amy H. Butler ◽  
Andrew J. Charlton-Perez ◽  
Daniella I. V. Domeisen ◽  
...  

Abstract. Over recent years there have been parallel advances in the development of stratosphere resolving numerical models, our understanding of stratosphere-troposphere interaction and the extension of long-range forecasts to explicitly include the stratosphere. These advances are now allowing new and improved capability in long range prediction. We present an overview of this development and show how the inclusion of the stratosphere in forecast systems aids monthly, seasonal and decadal climate predictions. We end with an outlook towards the future of climate forecasts and identify areas for improvement that could further benefit these rapidly evolving predictions.

2020 ◽  
Author(s):  
Ashish Sharma ◽  
Ze Jiang ◽  
Fiona Johnson

<p>As we write this abstract, Australia is experiencing widespread forest fires, Sydney has declared significant water restriction measures curtailing demand, and the entire country is experiencing a drought that is amongst the worst on record. Formulating a stable and practical approach for predicting drought into the future is being realised as an important need, as we enter an era of warmer climates that complicate this problem to an even greater extent. This study presents a novel basis for forecasting drought into the future. Use is made of a recently developed wavelets based methodology for transforming predictor variables so as to force greater consistency in spectral attributes with the response being modelled. Using a commonly adopted drought index, we demonstrate how the wavelets transformed predictor variables can be used to model the response with greater accuracy than otherwise. These transformed predictor variables are then used in conjunction with CMIP5 decadal climate forecasts to demonstrate the accuracy attainable at longer lead times than is currently possible. While our application focusses on the Australian mainland, the method is generic and can be adopted anywhere.</p>


Weather ◽  
1975 ◽  
Vol 30 (6) ◽  
pp. 172-181 ◽  
Author(s):  
I. T. Jolliffe ◽  
J. F. Foord
Keyword(s):  

2013 ◽  
Vol 10 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Y. Goddéris ◽  
S. L. Brantley ◽  
L. M. François ◽  
J. Schott ◽  
D. Pollard ◽  
...  

Abstract. Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE), vegetation (CARAIB) and weathering (WITCH), we explore the effect of an increase in CO2 of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the south but decreases strongly in the north. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2 – decreases in both end members (south and north) of the transect due to its retrograde solubility. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the north–south transect show that the dolomite weathering advance rate will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower lysocline expected in the oceans with increasing atmospheric CO2, we predict a deeper lysocline in future soils. Furthermore, in the central Mississippi Valley, soil lysocline deepening accelerates but in the south and north the deepening rate slows. This result illustrates the complex behavior of carbonate weathering facing short term global climate change. Predicting the global response of terrestrial weathering to increased atmospheric CO2 and temperature in the future will mostly depend upon our ability to make precise assessments of which areas of the globe increase or decrease in precipitation and soil drainage.


Author(s):  
Roger A., Jr. Pielke

El Niño 97-98 will be remembered as one of the strongest ever recorded (Glantz, 1999). For the first time, climate anomalies associated with the event were anticipated by scientists, and this information was communicated to the public and policy makers to prepare for the “meteorological mayhem that climatologists are predicting will beset the entire globe this winter. The source of coming chaos is El Niño . . .” (Brownlee and Tangley, 1997). Congress and government agencies reacted in varying ways, as illustrated by the headlines presented in Figure 7-1. The link between El Niño events and seasonal weather and climate anomalies across the globe are called teleconnections (Glantz and Tarlton, 1991). Typically, during an El Niño cycle hurricane frequencies in the Atlantic are depressed, the southeast United States receives more rain than usual (chapter 2), and parts of Australia, Africa, and South America experience drought. Global attention became focused on the El Niño phenomenon following the 1982-1983 event, which, at that time, had the greatest magnitude of any El Niño observed in more than a century. After El Niño 82-83, many seasonal anomalies that had occurred during its two years were attributed, rightly or wrongly, to its influence on the atmosphere. As a consequence of the event, societies around the world experienced both costs and benefits (Glantz et al., 1987). Another lasting consequence of the 1982-1983 event was an increase in research into the phenomenon. One result of this research in the late 1990s has been the production of forecasts of El Niño (and La Niña) events and the seasonal climate anomalies associated with them. This chapter discusses the use of climate forecasts by policy makers, drawing on experiences from El Niño 97-98, which replaced the 1982-1983 eventas the” climate event of the century.” The purpose of this chapter is to draw lessons from the use of El Niño -based climate forecasts during the 1997-1998 event in order to improve the future production, delivery, and use of climate predictions. This chapter focuses on examples of federal, state, and local responses in California, Florida, and Colorado to illustrate the lessons.


1976 ◽  
Vol 69 (3) ◽  
pp. 336-337
Author(s):  
David L. Trupin ◽  
E.Peter Prezzano ◽  
Robert J. Weakley ◽  
William T. Fisher ◽  
Jerald L. Merritt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document