Policy Responses to El Niño 1997-1998 : Implications for Forecast Value and the Future of Climate Services

Author(s):  
Roger A., Jr. Pielke

El Niño 97-98 will be remembered as one of the strongest ever recorded (Glantz, 1999). For the first time, climate anomalies associated with the event were anticipated by scientists, and this information was communicated to the public and policy makers to prepare for the “meteorological mayhem that climatologists are predicting will beset the entire globe this winter. The source of coming chaos is El Niño . . .” (Brownlee and Tangley, 1997). Congress and government agencies reacted in varying ways, as illustrated by the headlines presented in Figure 7-1. The link between El Niño events and seasonal weather and climate anomalies across the globe are called teleconnections (Glantz and Tarlton, 1991). Typically, during an El Niño cycle hurricane frequencies in the Atlantic are depressed, the southeast United States receives more rain than usual (chapter 2), and parts of Australia, Africa, and South America experience drought. Global attention became focused on the El Niño phenomenon following the 1982-1983 event, which, at that time, had the greatest magnitude of any El Niño observed in more than a century. After El Niño 82-83, many seasonal anomalies that had occurred during its two years were attributed, rightly or wrongly, to its influence on the atmosphere. As a consequence of the event, societies around the world experienced both costs and benefits (Glantz et al., 1987). Another lasting consequence of the 1982-1983 event was an increase in research into the phenomenon. One result of this research in the late 1990s has been the production of forecasts of El Niño (and La Niña) events and the seasonal climate anomalies associated with them. This chapter discusses the use of climate forecasts by policy makers, drawing on experiences from El Niño 97-98, which replaced the 1982-1983 eventas the” climate event of the century.” The purpose of this chapter is to draw lessons from the use of El Niño -based climate forecasts during the 1997-1998 event in order to improve the future production, delivery, and use of climate predictions. This chapter focuses on examples of federal, state, and local responses in California, Florida, and Colorado to illustrate the lessons.

2005 ◽  
Vol 18 (5) ◽  
pp. 651-665 ◽  
Author(s):  
Lisa Goddard ◽  
Maxx Dilley

Abstract El Niño–Southern Oscillation (ENSO) phenomenon, a periodic warming of sea surface temperatures in the eastern and central equatorial Pacific, generates a significant proportion of short-term climate variations globally, second only to the seasonal cycle. Global economic losses of tens of billions of dollars are attributed to extremes of ENSO (i.e., El Niño and La Niña), suggesting that these events disproportionately trigger socioeconomic disasters on the global scale. Since global El Niño/La Niña–associated climate impacts were first documented in the 1980s, the prevailing assumption has been that more severe and widespread climate anomalies, and, therefore, greater climate-related socioeconomic losses, should be expected during ENSO extremes. Contrary to expectations, climate anomalies associated with such losses are not greater overall during ENSO extremes than during neutral periods. However, during El Niño and La Niña events climate forecasts are shown to be more accurate. Stronger ENSO events lead to greater predictability of the climate and, potentially, the socioeconomic outcomes. Thus, the prudent use of climate forecasts could mitigate adverse impacts and lead instead to increased beneficial impacts, which could transform years of ENSO extremes into the least costly to life and property.


2020 ◽  
Vol 33 (5) ◽  
pp. 1619-1641 ◽  
Author(s):  
Jie Feng ◽  
Tao Lian ◽  
Jun Ying ◽  
Junde Li ◽  
Gen Li

AbstractWhether the state-of-the-art CMIP5 models have different El Niño types and how the degree of modeled El Niño diversity would be impacted by the future global warming are still heavily debated. In this study, cluster analysis is used to investigate El Niño diversity in 30 CMIP5 models. As the method does not rely on any prior knowledge of the patterns of El Niño seen in observations, it provides a practical way to identify the degree of El Niño diversity in models. Under the historical scenario, most models show a poor degree of El Niño diversity in their own model world, primarily due to the lopsided numbers of events belonging to the two modeled El Niño types and the weak compactness of events in each cluster. Four models are found showing significant El Niño diversity, yet none of them captures the longitudinal distributions of the warming centers of the two El Niño types seen in the observations. Heat budget analysis of the sea surface temperature (SST) anomaly suggests that the degree of modeled El Niño diversity is highly related to the climatological zonal SST gradient over the western-central equatorial Pacific in models. As the gradient is weakened in most models under the future high-emission scenario, the degree of modeled El Niño diversity is further reduced in the future. The results indicate that a better simulation of the SST gradient over the western-central equatorial Pacific might allow a more reliable simulation/projection of El Niño diversity in most CMIP5 models.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Guojian Wang ◽  
Wenju Cai

Abstract The 2019/20 Australian black summer bushfires were particularly severe in many respects, including its early commencement, large spatial coverage, and large number of burning days, preceded by record dry and hot anomalies. Determining whether greenhouse warming has played a role is an important issue. Here, we examine known modes of tropical climate variability that contribute to droughts in Australia to provide a gauge. We find that a two-year consecutive concurrence of the 2018 and 2019 positive Indian Ocean Dipole and the 2018 and 2019 Central Pacific El Niño, with the former affecting Southeast Australia, and the latter influencing eastern and northeastern Australia, may explain many characteristics of the fires. Such consecutive events occurred only once in the observations since 1911. Using two generations of state-of-the-art climate models under historical and a business-as-usual emission scenario, we show that the frequency of such consecutive concurrences increases slightly, but rainfall anomalies during such events are stronger in the future climate, and there are drying trends across Australia. The impact of the stronger rainfall anomalies during such events under drying trends is likely to be exacerbated by greenhouse warming-induced rise in temperatures, making such events in the future even more extreme.


Author(s):  
A.S. Lubkov ◽  
◽  
E.N. Voskresenskaya ◽  
O.V. Marchukova ◽  
◽  
...  

Comparative study of El Nino classification after different authors results and approaches. The preferences of objective spatio-temporal classification which done earlier by the authors of present paper were shown for climate manifestation study over the Atlanic-Eurasian region. Using of NCEP/NCAR reanalysis data on sea level pressure in 1948-2016 the El-Nino types manifestations were estimated in Azor high, Iceland low and Siberian anticyclone. On this basis, appropriate prognostic estimates of typical climate anomalies in the Atlantic-Eurasian region are made. Next, the previous predictions of typical climate anomalies in the Atlantic-Eurasian region associated with El Nino types were done in the paper.


Author(s):  
Stanley A. Changnon

El Niño 97-98 provided one of the most interesting and widely known climatic events of this century. It garnered enormous attention not only in the scientific community but also in the media and from the American public. El Niño developed rapidly in the tropical Pacific during May 1997, and by October “El Niño “had become a household phrase across America. Television and radio, newspapers and magazines pummeled America with the dire tales of El Niño during the fall of 1997 as the climate disruption battered the West Coast and the southern United States with storm after storm. Worried families changed vacation plans, and insurance executives pondered losses and raised rates. Victims of every type of severe weather blamed El Niño . After a winter filled with unusual weather, the head of the National Oceanic and Atmospheric Administration (NOAA) declared, “This winter’s El Niño ranks as one of the major climatic events of this century.” It was the first El Niño observed and forecast from start to finish. The event was noteworthy from several perspectives. • First, it became the largest and warmest El Niño to develop in the Pacific Ocean during the past 100 years. • Second, the news media gave great attention to the event, and El Niño received more attention at all levels than had any previous climate event. • Third, scientists were able to use El Niño conditions to successfully predict the climate conditions of the winter six months in advance. • Fourth, the predictive successes brought new credibility to the science of long-range prediction and, in general, acted to increase the public’s understanding of the climate and oceanic sciences. • Fifth, there were notable differences in how weather-sensitive decision makers reacted to the predictions, some used them for great gain, while others, fearing failure, did not. • Sixth, the great strength of El Niño brought forth claims that the phenomenon was the result of anthropogenic-induced global warming. This possibility was debated and added to the scientific-policy debates surrounding climate change. • Seventh, the net effect of the El Niño -influenced weather on the United States was an economic benefit, after early fears and predictions of great damages.


2017 ◽  
Vol 60 (6) ◽  
pp. 569-582
Author(s):  
WANG Yan-Feng ◽  
SUN Xu-Guang ◽  
YANG Xiu-Qun

Sign in / Sign up

Export Citation Format

Share Document