scholarly journals Rates of consumption of atmospheric CO<sub>2</sub> through the weathering of loess during the next 100 yr of climate change

2013 ◽  
Vol 10 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Y. Goddéris ◽  
S. L. Brantley ◽  
L. M. François ◽  
J. Schott ◽  
D. Pollard ◽  
...  

Abstract. Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE), vegetation (CARAIB) and weathering (WITCH), we explore the effect of an increase in CO2 of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the south but decreases strongly in the north. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2 – decreases in both end members (south and north) of the transect due to its retrograde solubility. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the north–south transect show that the dolomite weathering advance rate will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower lysocline expected in the oceans with increasing atmospheric CO2, we predict a deeper lysocline in future soils. Furthermore, in the central Mississippi Valley, soil lysocline deepening accelerates but in the south and north the deepening rate slows. This result illustrates the complex behavior of carbonate weathering facing short term global climate change. Predicting the global response of terrestrial weathering to increased atmospheric CO2 and temperature in the future will mostly depend upon our ability to make precise assessments of which areas of the globe increase or decrease in precipitation and soil drainage.

2012 ◽  
Vol 9 (8) ◽  
pp. 10847-10881 ◽  
Author(s):  
Y. Goddéris ◽  
S. L. Brantley ◽  
L. M. François ◽  
J. Schott ◽  
D. Pollard ◽  
...  

Abstract. Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE), vegetation (CARAIB) and weathering (WITCH) we explore the effect of an increase in CO2 of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the South but decreases strongly in the North. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2-decreases due to its retrograde solubility in both end members (South and North) of the transect. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the North–South transect show that dolomite weathering will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower lysocline expected in the oceans with increasing atmospheric CO2, we predict an acceleration of the lysocline deepening in soils in the central area of the Mississippi Valley, but a slowdown of its deepening in the Southern and Northern section. This result illustrates the complex behavior of carbonate weathering facing short term global climate change. Predicting the global response of terrestrial weathering to increased atmospheric CO2 and temperature in the future will mostly depend upon our ability to make precise assessments of which areas of the globe increase or decrease in precipitation and soil drainage.


This chapter is a transcript of Haq’s address to the North South Roundtable of 1992, where he identifies five critical challenges for the global economy for the future. If addressed properly, these can change the course of human history. He stresses on the need for redefining security to include security for people, not just of land or territories; to redefine the existing models of development to include ‘sustainable human development’; to find a more pragmatic balance between market efficiency and social compassion; to forge a new partnership between the North and the South to address issues of inequality; and the need to think on new patterns of governance for the next decade.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

&lt;p&gt;This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25&amp;#176; x 0.25&amp;#176; for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen&amp;#8217;s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22&amp;#176;C to 32&amp;#176;C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20&amp;#176;C to 33&amp;#176;C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.&lt;/p&gt;


2016 ◽  
Vol 61 (1) ◽  
pp. 55-86 ◽  
Author(s):  
T.D. Ford ◽  
N.E. Worley

This review of the South Pennine Orefield (SPO) draws together the findings from many years of underground field observations and petrographical study. Mineralization is of the Mississippi Valley-type (MVT) and is concentrated within an area of some 200 km2, mainly along the eastern margins of a large inlier, the Derbyshire High, in Carboniferous platform carbonate host rocks. The inlier covers some 390 km2, forms an up-dip promontory of a larger structure, the East Midlands Shelf, and is surrounded by shales and sandstones of the Millstone Grit and Pennine Coal Measures groups. Mineralization probably began during the late Westphalian (Moscovian, Mid Pennsylvanian), when subsidence due to thermal sag resulted in the limestone being buried to depths of c. 4 km beneath younger strata. A palaeohydraulic reconstruction is presented from analysis of mineralized palaeokarst features, which are interpreted as representing hypogenic or deep-seated karst formed by the interstratal circulation of hydrothermal water in a mostly confined hydrodynamic setting. It is reasoned that Variscan inversion of N–S faults to the east of the SPO resulted in erosion of Namurian and Westphalian (Upper Mississippian–Middle Pennsylvanian) rocks and created a hydraulic gradient inclined towards the south-west. Acidic F-Ba-Pb-Zn enriched fluid evolved in the Namurian basinal rocks and migrated into fractured limestone. The resultant wall-rock dissolution along existing wrench faults led to the formation of a maze of stratiform mineral deposits (flats) and more irregular spongework-shaped structures (pipes). The presence of hydrocarbon accumulations in the limestones and evidence from fluid inclusions indicates that the mineralizing fluids were chloride/fluoride-rich and compositionally typical of oilfield brine. Isotope evidence demonstrates a sulphate evaporite source of sulphur, mainly from the Chadian (Visean, Middle Mississippian) Middleton Anhydrite Formation. By the late Cenozoic, karstification of exposed carbonate rocks began and the current pattern of epigenic karst drainage started to develop as the regional hydraulic gradient reversed, assuming its present eastward inclined attitude. The mineralized hypogenic karst was overprinted by later drainage systems as the hydraulic gradient changed, and placer deposits were formed from the erosion of existing mineralization. This was accompanied by circulation of meteoric water and resulted in the supergene weathering of the sulphide ore minerals. Eastward underflow of meteoric groundwater also exploited the same mineralization flow paths. There is evidence that pre-mineralization hypogenic karst was also significant in the formation of orebodies in the North Pennine Orefield and the Halkyn–Minera Orefield of NE Wales.


2013 ◽  
Vol 10 (5) ◽  
pp. 1525-1557
Author(s):  
K. O'Driscoll ◽  
B. Mayer ◽  
J. Su ◽  
M. Mathis

Abstract. The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models. To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10 yr periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. Since estimates of future concentration levels of POPs in the atmosphere, oceans and rivers are not available, our approach was to reutilise 2005 values in the atmosphere, rivers and at the open ocean boundaries for every year of the simulations. In this way, we attribute differences between the three 10 yr simulations to climate change only. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilised, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilisation of γ-HCH increase in the future relative to the present. In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, both of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.


2021 ◽  
Author(s):  
Alexandra Rodriguez ◽  
Giuseppe La Gioia ◽  
Patricia Le Quilliec ◽  
Damien Fourcy ◽  
Philippe Clergeau

Global change, which regroups global warming, landscape transformations and other anthropic modifications of ecosystems, has effects on populations and communities and produces modifications in the expansion area of species. While some species disappear, other ones are beneficiated by the new conditions and some of them evolve in new adapted forms or leave their ancient distribution area. As climate change tends to increase the temperature in several regions of the world, some species have been seen to leave areas in equatorial regions in order to join colder areas either towards the north of the northern hemisphere or towards the south of the southern one. Many birds as have moved geographically in direction to the poles and in many cases they have anticipated their laying dates. Actually, two tit species that use to lay their eggs in a period that their fledging dates synchronize with the emerging dates of caterpillars are now evolving to reproductive in periods earlier than before the climate change. Several species are reacting like that and other ones are moving to the north in Europe for example. Nevertheless, and very curiously, European starling, Sturnus vulgaris, populations are behaving on the contrary: their laying dates are moving towards later spring and their distribution area is moving towards the south. In this study we explore and discuss about different factors that may explain this difference from other birds.


2013 ◽  
Vol 26 (16) ◽  
pp. 6046-6066 ◽  
Author(s):  
Yalin Fan ◽  
Isaac M. Held ◽  
Shian-Jiann Lin ◽  
Xiaolan L. Wang

Abstract Surface wind (U10) and significant wave height (Hs) response to global warming are investigated using a coupled atmosphere–wave model by perturbing the sea surface temperatures (SSTs) with anomalies generated by the Working Group on Coupled Modeling (WGCM) phase 3 of the Coupled Model Intercomparison Project (CMIP3) coupled models that use the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4)/Special Report on Emissions Scenarios A1B (SRES A1B) scenario late in the twenty-first century. Several consistent changes were observed across all four realizations for the seasonal means: robust increase of U10 and Hs in the Southern Ocean for both the austral summer and winter due to the poleward shift of the jet stream; a dipole pattern of the U10 and Hs with increases in the northeast sector and decreases at the midlatitude during boreal winter in the North Atlantic due to the more frequent occurrence of the positive phases of the North Atlantic Oscillation (NAO); and strong decrease of U10 and Hs in the tropical western Pacific Ocean during austral summer, which might be caused by the joint effect of the weakening of the Walker circulation and the large hurricane frequency decrease in the South Pacific. Changes of the 99th percentile U10 and Hs are twice as strong as changes in the seasonal means, and the maximum changes are mainly dominated by the changes in hurricanes. Robust strong decreases of U10 and Hs in the South Pacific are obtained because of the large hurricane frequency decrease, while the results in the Northern Hemisphere basins differ among the models. An additional sensitivity experiment suggests that the qualitative response of U10 and Hs is not affected by using SST anomalies only and maintaining the radiative forcing unchanged (using 1980 values), as in this study.


2015 ◽  
Vol 2 (1) ◽  
pp. 3-19 ◽  
Author(s):  
Raja Ben Ahmed ◽  
Yasmina Romdhane ◽  
Saïda Tekaya

In this study 13 leech species from Tunisia are listed. They belong to 2 orders, 2 suborders, 4 families and 11 genera. The paper includes also data about hosts and habitats, distribution in the world and in Tunisia. Faunistic informations on leeches were found in literature and in the results of recent surveys conducted by the authors in the North East and the South of the country. The objectives of this study were to summarize historical and recent taxonomic data, and to propose an identification key for species signalized. This checklist is to be completed, taking into account the hydrobiological network of the country especially the North West region, which may reveal more species in the future


Sign in / Sign up

Export Citation Format

Share Document