scholarly journals An assessment of macrophysical and microphysical cloud properties driving radiative forcing of shallow trade-wind clouds

2021 ◽  
Author(s):  
Anna Elizabeth Luebke ◽  
André Ehrlich ◽  
Michael Schäfer ◽  
Kevin Wolf ◽  
Manfred Wendisch

Abstract. The clouds in the Atlantic trade-wind region are known to have an important role in the global climate system. Acquiring a comprehensive characterization of these clouds based on observations is a challenge, but it is a necessary piece of information for the evaluation of their representation in models. An exploration of how the macrophysical and microphysical cloud properties and organization of the cloud field impact the large-scale cloud radiative forcing is presented here. Direct measurements of the cloud radiative effects from the Broadband AirCrAft RaDiometer Instrumentation (BACARDI) on board the High Altitude and LOng Range Research Aircraft (HALO) and cloud observations from the GOES-16 satellite during the Elucidating the role of clouds-circulation coupling in climate (EUREC4A) campaign provide evidence to demonstrate what drives the cloud radiative effects in shallow trade-wind clouds. We find that the solar and terrestrial radiative effects of these clouds are largely driven by their macrophysical properties (cloud fraction and a scene-averaged liquid water path). However, we also conclude that the microphysical properties, cloud top height and the organization of the cloud field demonstrate an increasing relevance in determining the cloud radiative effects as the cloud fraction increases.

2021 ◽  
Author(s):  
Anna Luebke ◽  
André Ehrlich ◽  
Michael Schäfer ◽  
Kevin Wolf ◽  
Manfred Wendisch

<p>The clouds in the Atlantic trade-wind region are known to have an important role in the global climate system, but the interactions between the microphysical, macrophysical and radiative properties of these clouds are complex. This work seeks to understand how the macrophysical properties and organization of the cloud field impact the large-scale cloud radiative forcing in order to provide the necessary information for the evaluation of the representation of these clouds in models. During the 2020 EUREC<sup>4</sup>A campaign, the German HALO aircraft was equipped for the first time with two instruments - the BACARDI instrument, a broadband radiometer that encompasses a set of pyrgeometers and pyranometers to measure the upward and downward solar and terrestrial radiation at flight level, and the VELOX Thermal IR imager. Simultaneously, one-minute resolution observations of the flight domain were obtained by the GOES-E satellite, thus providing information about the properties of the clouds on a spatial scale compatible with the large footprint of the BACARDI instrument. Using the products of these three instruments, we observe how the changing cloud field (e.g. cloud fraction, mean liquid water path (LWP), cloud top height, degree of clustering) in the EUREC<sup>4</sup>A domain impacts the radiation measured at flight level. We see that although cloud fraction plays a significant role as expected, it is not sufficient to parameterize the cloud radiative effects. Furthermore, the results indicate that the general organization of the cloud field as well as other properties describing the cloud population are necessary, but their relative importance varies between different cloud scenes.</p>


2010 ◽  
Vol 10 (14) ◽  
pp. 6527-6536 ◽  
Author(s):  
M. A. Brunke ◽  
S. P. de Szoeke ◽  
P. Zuidema ◽  
X. Zeng

Abstract. Here, liquid water path (LWP), cloud fraction, cloud top height, and cloud base height retrieved by a suite of A-train satellite instruments (the CPR aboard CloudSat, CALIOP aboard CALIPSO, and MODIS aboard Aqua) are compared to ship observations from research cruises made in 2001 and 2003–2007 into the stratus/stratocumulus deck over the southeast Pacific Ocean. It is found that CloudSat radar-only LWP is generally too high over this region and the CloudSat/CALIPSO cloud bases are too low. This results in a relationship (LWP~h9) between CloudSat LWP and CALIPSO cloud thickness (h) that is very different from the adiabatic relationship (LWP~h2) from in situ observations. Such biases can be reduced if LWPs suspected to be contaminated by precipitation are eliminated, as determined by the maximum radar reflectivity Zmax>−15 dBZ in the apparent lower half of the cloud, and if cloud bases are determined based upon the adiabatically-determined cloud thickness (h~LWP1/2). Furthermore, comparing results from a global model (CAM3.1) to ship observations reveals that, while the simulated LWP is quite reasonable, the model cloud is too thick and too low, allowing the model to have LWPs that are almost independent of h. This model can also obtain a reasonable diurnal cycle in LWP and cloud fraction at a location roughly in the centre of this region (20° S, 85° W) but has an opposite diurnal cycle to those observed aboard ship at a location closer to the coast (20° S, 75° W). The diurnal cycle at the latter location is slightly improved in the newest version of the model (CAM4). However, the simulated clouds remain too thick and too low, as cloud bases are usually at or near the surface.


2014 ◽  
Vol 14 (13) ◽  
pp. 6695-6716 ◽  
Author(s):  
A. Muhlbauer ◽  
I. L. McCoy ◽  
R. Wood

Abstract. An artificial neural network cloud classification scheme is combined with A-train observations to characterize the physical properties and radiative effects of marine low clouds based on their morphology and type of mesoscale cellular convection (MCC) on a global scale. The cloud morphological categories are (i) organized closed MCC, (ii) organized open MCC and (iii) cellular but disorganized MCC. Global distributions of the frequency of occurrence of MCC types show clear regional signatures. Organized closed and open MCCs are most frequently found in subtropical regions and in midlatitude storm tracks of both hemispheres. Cellular but disorganized MCC are the predominant type of marine low clouds in regions with warmer sea surface temperature such as in the tropics and trade wind zones. All MCC types exhibit a pronounced seasonal cycle. The physical properties of MCCs such as cloud fraction, radar reflectivity, drizzle rates and cloud top heights as well as the radiative effects of MCCs are found highly variable and a function of the type of MCC. On a global scale, the cloud fraction is largest for closed MCC with mean cloud fractions of about 90%, whereas cloud fractions of open and cellular but disorganized MCC are only about 51% and 40%, respectively. Probability density functions (PDFs) of cloud fractions are heavily skewed and exhibit modest regional variability. PDFs of column maximum radar reflectivities and inferred cloud base drizzle rates indicate fundamental differences in the cloud and precipitation characteristics of different MCC types. Similarly, the radiative effects of MCCs differ substantially from each other in terms of shortwave reflectance and transmissivity. These differences highlight the importance of low-cloud morphologies and their associated cloudiness on the shortwave cloud forcing.


2020 ◽  
Vol 20 (1) ◽  
pp. 613-623 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Johannes Mülmenstädt ◽  
Andrew Gettelman ◽  
Florent F. Malavelle ◽  
Hugh Morrison ◽  
...  

Abstract. The radiative forcing from aerosols (particularly through their interaction with clouds) remains one of the most uncertain components of the human forcing of the climate. Observation-based studies have typically found a smaller aerosol effective radiative forcing than in model simulations and were given preferential weighting in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). With their own sources of uncertainty, it is not clear that observation-based estimates are more reliable. Understanding the source of the model and observational differences is thus vital to reduce uncertainty in the impact of aerosols on the climate. These reported discrepancies arise from the different methods of separating the components of aerosol forcing used in model and observational studies. Applying the observational decomposition to global climate model (GCM) output, the two different lines of evidence are surprisingly similar, with a much better agreement on the magnitude of aerosol impacts on cloud properties. Cloud adjustments remain a significant source of uncertainty, particularly for ice clouds. However, they are consistent with the uncertainty from observation-based methods, with the liquid water path adjustment usually enhancing the Twomey effect by less than 50 %. Depending on different sets of assumptions, this work suggests that model and observation-based estimates could be more equally weighted in future synthesis studies.


2011 ◽  
Vol 11 (6) ◽  
pp. 2893-2901 ◽  
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations, homogeneity parameters used in models based on their ratio, and the probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer (MODIS) are estimated globally as function of averaging scale varying from 5 to 500 km. The properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations and generalized flatness are compared to predictions for turbulent systems. Analytical expressions are identified that fit best to each observed PDF. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2010 ◽  
Vol 10 (8) ◽  
pp. 20069-20124
Author(s):  
A. Protat ◽  
J. Delanoë ◽  
P. T. May ◽  
J. Haynes ◽  
C. Jakob ◽  
...  

Abstract. The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden–Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived. The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is found to be large, producing mean differences of up to a factor of 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes, a factor of 3 to 4 for the ISCCP regimes and the MJO phases, and mean differences of a factor of 2 typically in all microphysical properties analysed in the present paper between large-scale atmospheric regimes or MJO phases. Large differences in occurrence (up to 60–80%) are also found in the main patterns of the cloud fraction distribution of ice clouds (fractions smaller than 0.3 and larger than 0.9). Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (almost no detectable diurnal cycle) to values in excess of 2.0 (very large diurnal amplitude).


2019 ◽  
Author(s):  
Edward Gryspeerdt ◽  
Johannes Mülmenstädt ◽  
Andrew Gettelman ◽  
Florent F. Malavelle ◽  
Hugh Morrison ◽  
...  

Abstract. The radiative forcing from aerosols (particularly through their interaction with clouds) remains one of the most uncertain components of the human forcing of the climate. Observation-based studies have typically found a smaller aerosol effective radiative forcing than in model simulations and were given preferential weighting in the IPCC AR5 report. With their own sources of uncertainty, it is not clear that observation-based estimates are more reliable. Understanding the source of the model-observational difference is thus vital to reduce uncertainty in the impact of aerosols on the climate. These reported discrepancies arise from the different decompositions of the aerosol forcing used in model and observational studies. Applying the observational decomposition to global climate model output, the two different lines of evidence are surprisingly similar, with a much better agreement on the magnitude of aerosol impacts on cloud properties. Cloud adjustments remain a significant source of uncertainty, particularly for ice clouds. However, they are consistent with the uncertainty from observation-based methods, with the liquid water path adjustment usually enhancing the Twomey effect by less than 50 %. Depending on different sets of assumptions, this work suggests that model and observation-based estimates could be more equally weighted in future synthesis studies.


2010 ◽  
Vol 10 (9) ◽  
pp. 21303-21321
Author(s):  
M. de la Torre Juárez ◽  
A. B. Davis ◽  
E. J. Fetzer

Abstract. Means, standard deviations and Probability distribution functions (PDFs) of cloud properties from the MODerate resolution Infrared Spectrometer are estimated globally as function of averaging scale, varied from 5 to 500 km. These properties – cloud fraction, droplet effective radius, and liquid water path – all matter for cloud-climate uncertainty quantification and reduction efforts. Analytical expressions are identified that fit best to each observed PDF. Global means and standard deviations are confirmed to change with scale. For the range of scales considered, global means vary only within 3% for cloud fraction, 7% for liquid water path, and 0.2% for cloud particle effective radius. These scale dependences contribute to the uncertainties in their global budgets. Scale dependence for standard deviations is compared to predictions for turbulent systems. While the best analytical PDF fit to each variable differs, all PDFs are well described by log-normal PDFs when the mean is normalized by the standard deviation inside each averaging domain. Importantly, log-normal distributions yield significantly better fits to the observations than gaussians at all scales. This suggests a possible approach for both sub-grid and unified stochastic modeling of these variables at all scales. The results also highlight the need to establish an adequate spatial resolution for two-stream radiative studies of cloud-climate interactions.


2014 ◽  
Vol 14 (5) ◽  
pp. 6981-7023 ◽  
Author(s):  
A. Muhlbauer ◽  
I. L. McCoy ◽  
R. Wood

Abstract. An artificial neural network cloud classification scheme is combined with A-Train observations to characterize the physical properties and radiative effects of marine low clouds based on their morphology and type of mesoscale cellular convection (MCC) on a global scale. The cloud morphological categories are (i) organized closed MCC, (ii) organized open MCC and (iii) cellular but disorganized MCC. Global distributions of the frequency of occurrence of MCC types show clear regional signatures. Organized closed and open MCCs are most frequently found in subtropical regions and in mid-latitude storm tracks of both hemispheres. Cellular but disorganized MCC are the predominant type of marine low clouds in regions with warmer sea surface temperature such as in the tropics and trade wind zones. All MCC types exhibit a pronounced seasonal cycle. The physical properties of MCCs such as cloud fraction, radar reflectivity, drizzle rates and cloud top heights as well as the radiative effects of MCCs are found highly variable and a function of the type of MCC. On a global scale, the cloud fraction is largest for closed MCC with mean cloud fractions of about 90% whereas cloud fractions of open and cellular but disorganized MCC are only about 51% and 40%, respectively. Probability density functions (PDFs) of cloud fractions are heavily skewed and exhibit modest regional variability. PDFs of column maximum radar reflectivities and inferred cloud base drizzle rates indicate fundamental differences in the cloud and precipitation characteristics of different MCC types. Similarly, the radiative effects of MCCs differ substantially from each other in terms of shortwave reflectance and transmissivity. These differences highlight the importance of low cloud morphologies and their associated cloudiness on the shortwave cloud forcing.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


Sign in / Sign up

Export Citation Format

Share Document