scholarly journals Modelling atmospheric OH-reactivity in a boreal forest ecosystem

2011 ◽  
Vol 11 (18) ◽  
pp. 9709-9719 ◽  
Author(s):  
D. Mogensen ◽  
S. Smolander ◽  
A. Sogachev ◽  
L. Zhou ◽  
V. Sinha ◽  
...  

Abstract. We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011a) together with measurements from Hyytiälä, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for ~30–50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds and increases during summer. The summertime canopy level OH-reactivity peaks during night and the vertical OH-reactivity decreases with height.

2011 ◽  
Vol 11 (3) ◽  
pp. 9133-9163 ◽  
Author(s):  
D. Mogensen ◽  
S. Smolander ◽  
A. Sogachev ◽  
L. Zhou ◽  
V. Sinha ◽  
...  

Abstract. We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011) together with measurements from Hyytiälä, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for ~30–50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds and increases during summer. The summertime canopy level OH-reactivity peaks during night and the vertical OH-reactivity decreases with height.


2014 ◽  
Vol 14 (22) ◽  
pp. 30947-31007 ◽  
Author(s):  
D. Mogensen ◽  
R. Gierens ◽  
J. N. Crowley ◽  
P. Keronen ◽  
S. Smolander ◽  
...  

Abstract. Using the 1D atmospheric chemistry–transport model SOSAA, we have investigated the atmospheric reactivity of a boreal forest ecosystem during the HUMPPA-COPEC-10 campaign (summer 2010, at SMEAR II in Southern Finland). For the very first time, we present vertically resolved model simulations of the NO3- and O3-reactivity (R) together with the modelled and measured reactivity of OH. We find that OH is the most reactive oxidant (R~3 s−1) followed by NO3 (R~0.07 s−1) and O3 (R~2 × 10−5 s−1). The missing OH-reactivity was found to be large in accordance with measurements (~65%) as would be expected from the chemical subset described in the model. The accounted OH radical sinks were inorganic compounds (~41%, mainly due to reaction with CO), emitted monoterpenes (~14%) and oxidised biogenic volatile organic compounds (~44%). The missing reactivity is expected to be due to unknown biogenic volatile organic compounds and their photoproducts, indicating that the true main sink of OH is not expected to be inorganic compounds. The NO3 radical was found to react mainly with primary emitted monoterpenes (~60%) and inorganic compounds (~37%, including NO2). NO2 is, however, only a temporary sink of NO3 under the conditions of the campaign and does not affect the NO3 concentration. We discuss the difference between instantaneous and steady state reactivity and present the first boreal forest steady state lifetime of NO3 (113 s). O3 almost exclusively reacts with inorganic compounds (~91%, mainly NO, but also NO2 during night) and less with primary emitted sesquiterpenes (~6%) and monoterpenes (~3%). When considering the concentration of the oxidants investigated, we find that O3 is the oxidant that is capable of removing pollutants fastest. As part of this study, we developed a simple empirical parameterisation for conversion of measured spectral irradiance into actinic flux. Further, the meteorological conditions were evaluated using radiosonde observations and ground based measurements. The overall vertical structure of the boundary layer is discussed, together with validation of the surface energy balance and turbulent fluxes. The sensible heat and momentum fluxes above the canopy were on average overestimated, while the latent heat flux was underestimated.


2007 ◽  
Vol 112 (D15) ◽  
Author(s):  
Vivien Mallet ◽  
Adélaïde Pourchet ◽  
Denis Quélo ◽  
Bruno Sportisse

2011 ◽  
Vol 4 (7) ◽  
pp. 1491-1514 ◽  
Author(s):  
P. Valks ◽  
G. Pinardi ◽  
A. Richter ◽  
J.-C. Lambert ◽  
N. Hao ◽  
...  

Abstract. This paper presents the algorithm for the operational near real time retrieval of total and tropospheric NO2 columns from the Global Ozone Monitoring Experiment (GOME-2). The retrieval is performed with the GOME Data Processor (GDP) version 4.4 as used by the EUMETSAT Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M-SAF). The differential optical absorption spectroscopy (DOAS) method is used to determine NO2 slant columns from GOME-2 (ir)radiance data in the 425–450 nm range. Initial total NO2 columns are computed using stratospheric air mass factors, and GOME-2 derived cloud properties are used to calculate the air mass factors for scenarios in the presence of clouds. To obtain the stratospheric NO2 component, a spatial filtering approach is used, which is shown to be an improvement on the Pacific reference sector method. Tropospheric air mass factors are computed using monthly averaged NO2 profiles from the MOZART-2 chemistry transport model. An error analysis shows that the random error in the GOME-2 NO2 slant columns is approximately 0.45 × 1015 molec cm−2. As a result of the improved quartz diffuser plate used in the GOME-2 instrument, the systematic error in the slant columns is strongly reduced compared to GOME/ERS-2. The estimated uncertainty in the GOME-2 tropospheric NO2 column for polluted conditions ranges from 40 to 80 %. An end-to-end ground-based validation approach for the GOME-2 NO2 columns is illustrated based on multi-axis MAXDOAS measurements at the Observatoire de Haute Provence (OHP). The GOME-2 stratospheric NO2 columns are found to be in good overall agreement with coincident ground-based measurements at OHP. A time series of the MAXDOAS and the GOME-2 tropospheric NO2 columns shows that pollution episodes at OHP are well captured by GOME-2. Monthly mean tropospheric columns are in very good agreement, with differences generally within 0.5 × 1015 molec cm−2.


2016 ◽  
Vol 16 (17) ◽  
pp. 11415-11431 ◽  
Author(s):  
Marsailidh M. Twigg ◽  
Evgenia Ilyinskaya ◽  
Sonya Beccaceci ◽  
David C. Green ◽  
Matthew R. Jones ◽  
...  

Abstract. Volcanic emissions, specifically from Iceland, pose a pan-European risk and are on the UK National Risk Register due to potential impacts on aviation, public health, agriculture, the environment and the economy, from both effusive and explosive activity. During the 2014–2015 fissure eruption at Holuhraun in Iceland, the UK atmosphere was significantly perturbed. This study focuses one major incursion in September 2014, affecting the surface concentrations of both aerosols and gases across the UK, with sites in Scotland experiencing the highest sulfur dioxide (SO2) concentrations. The perturbation event observed was confirmed to originate from the fissure eruption using satellite data from GOME2B and the chemical transport model, EMEP4UK, which was used to establish the spatial distribution of the plume over the UK during the event of interest. At the two UK European Monitoring and Evaluation Program (EMEP) supersite observatories (Auchencorth Moss, SE Scotland, and Harwell, SE England) significant alterations in sulfate (SO42−) content of PM10 and PM2.5 during this event, concurrently with evidence of an increase in ultrafine aerosol most likely due to nucleation and growth of aerosol within the plume, were observed. At Auchencorth Moss, higher hydrochloric acid (HCl) concentrations during the September event (max  =  1.21 µg m−3, cf. annual average 0.12 µg m−3 in 2013), were assessed to be due to acid displacement of chloride (Cl−) from sea salt (NaCl) to form HCl gas rather than due to primary emissions of HCl from Holuhraun. The gas and aerosol partitioning at Auchencorth Moss of inorganic species by thermodynamic modelling confirmed the observed partitioning of HCl. Using the data from the chemical thermodynamic model, ISORROPIA-II, there is evidence that the background aerosol, which is typically basic at this site, became acidic with an estimated pH of 3.8 during the peak of the event.Volcano plume episodes were periodically observed by the majority of the UK air quality monitoring networks during the first 4 months of the eruption (August–December 2014), at both hourly and monthly resolution. In the low-resolution networks, which provide monthly SO2 averages, concentrations were found to be significantly elevated at remote “clean” sites in NE Scotland and SW England, with record-high SO2 concentrations for some sites in September 2014. For sites which are regularly influenced by anthropogenic emissions, taking into account the underlying trends, the eruption led to statistically unremarkable SO2 concentrations (return probabilities  > 0.1, ∼ 10 months). However, for a few sites, SO2 concentrations were clearly much higher than has been previously observed (return probability < 0.005,  > 3000 months). The Holuhraun Icelandic eruption has resulted in a unique study providing direct evidence of atmospheric chemistry perturbation of both gases and aerosols in the UK background atmosphere. The measurements can be used to both challenge and verify existing atmospheric chemistry of volcano plumes, especially those originating from effusive eruptions, which have been underexplored due to limited observations available in the literature. If all European data sets were collated this would allow improved model verification and risk assessments for future volcanic eruptions of this type.


2014 ◽  
Vol 14 (1) ◽  
pp. 267-282 ◽  
Author(s):  
A. T. Brown ◽  
M. P. Chipperfield ◽  
N. A. D. Richards ◽  
C. Boone ◽  
P. F. Bernath

Abstract. Fluorine-containing species can be extremely effective atmospheric greenhouse gases. We present fluorine budgets using organic and inorganic species retrieved by the ACE-FTS satellite instrument supplemented with output from the SLIMCAT 3-D chemical transport model. The budgets are calculated between 2004 and 2009 for a number of latitude bands: 70–30° N, 30–00° N, 00° N–30° S, and 30–70° S. At lower altitudes total fluorine profiles are dominated by the contribution from CFC-12, up to an altitude of 20 km in the extra-tropics and 29 km in the tropics; above these altitudes the profiles are dominated by hydrogen fluoride (HF). Our data show that total fluorine profiles at all locations have a negative slope with altitude, providing evidence that overall fluorine emissions (measured by their F content) have been increasing with time. Total stratospheric fluorine is increasing at a similar rate in the tropics: 32.5 ± 4.9 ppt yr−1 (1.31 ± 0.20% per year) in the Northern Hemisphere (NH) and 29.8 ± 5.3 ppt yr−1 (1.21 ± 0.22% per year) in the Southern Hemisphere (SH). Extra-tropical total stratospheric fluorine is also increasing at a similar rate in both the NH and SH: 28.3 ± 2.7 ppt per year (1.12 ± 0.11% per year) in the NH and 24.3 ± 3.1 ppt per year (0.96 ± 0.12% per year) in the SH. The calculation of radiative efficiency-weighted total fluorine allows the changes in radiative forcing between 2004 and 2009 to be calculated. These results show an increase in radiative forcing of between 0.23 ± 0.11% per year and 0.45 ± 0.11% per year, due to the increase in fluorine-containing species during this time. The decreasing trends in the mixing ratios of halons and chlorofluorocarbons (CFCs), due to their prohibition under the Montreal Protocol, have suppressed an increase in total fluorine caused by increasing mixing ratios of hydrofluorocarbons (HFCs). This has reduced the impact of fluorine-containing species on global warming.


2020 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Nikos Daskalakis ◽  
Angelos Gkouvousis ◽  
Andreas Hilboll ◽  
Twan van Noije ◽  
...  

Abstract. This work documents and evaluates the tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. Compared to the modified CB05 chemical mechanism previously used in the model, the MOGUNTIA includes a detailed representation of the light hydrocarbons (C1-C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics. Another feature implemented in TM5-MP for this work is the use of the Rosenbrock solver in the chemistry code, which can replace the classical Euler Backward Integration method of the model. Global budgets of ozone (O3), carbon monoxide (CO), hydroxyl radicals (OH), nitrogen oxides (NOX) and volatile organic compounds (VOCs) are here analyzed and their mixing ratios are compared with a series of surface, aircraft and satellite observations for the year 2006. Both mechanisms appear to be able to represent satisfactorily observed mixing ratios of important trace gases, with the MOGUNTIA chemistry configuration yielding lower biases compared to measurements in most of the cases. However, the two chemical mechanisms fail to reproduce the observed mixing ratios of light VOCs, indicating insufficient primary emission source strengths, too weak vertical mixing in the boundary layer, and/or a low bias in the secondary contribution of C2-C3 organics via VOC atmospheric oxidation. Relative computational memory and time requirements of the different model configurations are also compared and discussed. Overall, compared to other chemistry schemes in use in global CTMs, the MOGUNTIA scheme simulates a large suite of oxygenated VOCs that are observed in the atmosphere at significant levels and are involved in aerosol formation, expanding, thus, the applications of TM5-MP.


Sign in / Sign up

Export Citation Format

Share Document