scholarly journals Technical note: A new approach to discriminate different black carbon sources by utilising fullerene and metals in positive matrix factorisation analysis of high-resolution soot particle aerosol mass spectrometer data

2021 ◽  
Vol 21 (13) ◽  
pp. 10763-10777
Author(s):  
Zainab Bibi ◽  
Hugh Coe ◽  
James Brooks ◽  
Paul I. Williams ◽  
Ernesto Reyes-Villegas ◽  
...  

Abstract. Atmospheric aerosol particles are known to have detrimental effects on human health and climate. Black carbon is an important constituent of atmospheric aerosol particulate matter (PM), emitted from incomplete combustion. Source apportionment of BC is very important, to evaluate the influence of different sources. The high-resolution soot particle aerosol mass spectrometer (HR-SP-AMS) instrument uses a laser vaporiser, which allows the real-time detection and characterisation of refractory black carbon (rBC) and its internally mixed particles such as metals, coating species, and rBC subcomponents in the form of HOA + fullerene. In this case study, the soot data were collected by using HR-SP-AMS during Guy Fawkes Night on 5 November 2014. Positive matrix factorisation was applied to positively discriminate between different wood-burning and bonfire sources for the first time, which no existing black carbon source apportionment technique is currently able to do. Along with this, the use of the fullerene signals in differentiating between soot sources and the use of metals as a tracer for fireworks has also been investigated, which did not significantly contribute to the rBC concentrations. The addition of fullerene signals and successful positive matrix factorisation (PMF) application to HR-SP-AMS data apportioned rBC into more than two sources. These bonfire sources are HOA + fullerene, biomass burning organic aerosol, more oxidised oxygenated organic aerosol (MO-OOA), and non-bonfire sources such as hydrocarbon-like OA and domestic burning. The result of correlation analysis between HR-SP-AMS data and previously published Aethalometer, MAAP, and CIMS data provides an effective way of gaining insights into the relationships between the variables and provide a quantitative estimate of the source contributions to the BC budget during this period. This research study is an important demonstration of using HR-SP-AMS for the purpose of BC source apportionment.

2020 ◽  
Author(s):  
Zainab Bibi ◽  
Hugh Coe ◽  
James Brooks ◽  
Paul I. Williams ◽  
Ernesto Reyes-Villegas ◽  
...  

Abstract. Atmospheric aerosol particles are known to have detrimental effects on human health and climate. Black carbon is an important constituent of atmospheric aerosol particulate matter (PM), emitted from the incomplete combustion process and cause significant effects on the air quality and human health. Source apportionment of BC is very important, to identify the fraction of BC that has an anthropogenic origin and to evaluate the influence of different sources. The High-Resolution Soot Particle Aerosol Mass Spectrometer (HR-SP-AMS) instrument uses a laser vaporizer, which allows the real-time detection and characterization of refractory BC and its internally mixed particles such as metals, coating species and rBC subcomponent in the form of fullerene. In this case study, the soot data was collected by using HR-SP-AMS during Guy Fawkes Night on 5th of November 2014. Positive matrix factorization (PMF) was applied in order to positively discriminate between different wood-burning sources for the first time, in this case, BC from domestic wood-burning and bonfires, which no existing black carbon source apportionment technique is currently able to do. Along with this, the use of the fullerene signals in differentiating between soot sources and the use of metals as a tracer for fireworks has also been investigated, which has not significantly contributed to the BC concentrations. The addition of fullerenes signals and successful application of PMF on SP-AMS data apportioned BC into more than two sources. These bonfire sources are hydrocarbon-like Fullerenes, biomass burning organic aerosol, HULIS (humic-like substance) and non-bonfire sources such as hydrocarbon-like OA and domestic burning. The result of correlation analysis between HR-SP-AMS data with previously published Aethalometer, MAAP and CIMS data provides an effective way of quickly gaining insights in relations between the variables and also provide a quantitative estimate of the source contributions to the BC budget during this period. This research study is an important demonstration of using HR-SP-AMS for the purpose of BC source apportionment.


2017 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Eleni Karnezi ◽  
James R. Hite Jr. ◽  
Aikaterini Bougiatioti ◽  
Kate Cerully ◽  
...  

Abstract. The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centerville, Alabama) was constrained using measurements from an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a thermodenuder. Positive Matrix Factorization (PMF) analysis was applied on both the ambient and thermodenuded high resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiols (IEPOX) related factor (Isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol−1 for the LO-OOA, 89 ± 10 kJ mol−1 for the MO-OOA, 55 ± 11 kJ mol−1 for the BBOA, and 63 ± 15 kJ mol−1 for the Isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due according to the model to its low enthalpy of vaporization. The Isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.


2018 ◽  
Vol 18 (8) ◽  
pp. 5799-5819 ◽  
Author(s):  
Evangelia Kostenidou ◽  
Eleni Karnezi ◽  
James R. Hite Jr. ◽  
Aikaterini Bougiatioti ◽  
Kate Cerully ◽  
...  

Abstract. The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 ∘C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol−1 for the LO-OOA, 89 ± 10 kJ mol−1 for the MO-OOA, 55 ± 11 kJ mol−1 for the BBOA, and 63 ± 15 kJ mol−1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.


2017 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

Abstract. We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France) which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). PM2.5 (particulate matter with an aerodynamic diameter


2017 ◽  
Author(s):  
Ernesto Reyes-Villegas ◽  
Michael Priestley ◽  
Yu-Chieh Ting ◽  
Sophie Haslett ◽  
Thomas Bannan ◽  
...  

Abstract. Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality such as bonfires and fireworks. High aerosol and gas concentrations generated from public bonfires/fireworks were measured in order to understand the night-time chemical processes and their atmospheric implications. Nitrate chemistry was observed during the bonfire night with nitrogen containing compounds in both gas and aerosol phase and further N2O5 and ClNO2 concentrations, which depleted early next morning due to photolysis of NO3 radicals, ceasing production. Particulate organic nitrate (PON) concentrations of 2.8 μg.m−3 were estimated using the m/z 46:30 ratios from AMS measurements, according to previously published methods. ME-2 source apportionment was performed to determine organic aerosol concentrations from different sources after modifying the fragmentation table and it was possible to identify two PON factors representing primary (pPON_ME2) and secondary (sPON_ME2) contributions. A slight improvement in the agreement between the source apportionment of the AMS and a collocated AE-31 Aethalometer was observed after modifying the prescribed fragmentation in the AMS organic spectrum (the fragmentation table) to determine PON sources, which resulted in an r2 = 0.865 between BBOA and babs_470wb compared to an r2 = 0.819 obtained without the modification. Correlations between OA sources and measurements made using Time of Flight Chemical Ionization Mass Spectrometry with an iodide adduct ion were performed in order to determine possible gas tracers to be used in future ME-2 analyses to constrain solutions. During bonfire night, high correlations (r2) were observed between BBOA and methacrylic acid (0.915), Acrylic acid (0.901), nitrous acid (0.864), propionic acid, (0.851) and Hydrogen cyanide (0.755). A series of oxygenated species, chlorine compounds as well as cresol showed good correlations with sPON_ME2 and the low volatility oxygenated organic aerosol (LVOOA) factor during an episode with low pollutant concentrations. Further analysis of pPON_ME2 and sPON_ME2 was performed in order to determine whether these PON sources absorb light near the UV region using an Aethalometer. This hypothesis was tested by doing multilinear regressions between babs_470wb and BBOA, sPON_ME2 and pPON_ME2. Our results suggest that sPON_ME2 does not absorb light at 470 nm while pPON_ME2 and LVOOA absorb light at 470 nm over that of black carbon. This may inform black carbon (BC) source apportionment studies from Aethalometer measurements, through investigation of the brown carbon contribution to babs_470wb.


2014 ◽  
Vol 7 (12) ◽  
pp. 4507-4516 ◽  
Author(s):  
M. D. Willis ◽  
A. K. Y. Lee ◽  
T. B. Onasch ◽  
E. C. Fortner ◽  
L. R. Williams ◽  
...  

Abstract. The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.


2019 ◽  
Vol 46 (14) ◽  
pp. 8474-8483 ◽  
Author(s):  
Yao He ◽  
Yele Sun ◽  
Qingqing Wang ◽  
Wei Zhou ◽  
Weiqi Xu ◽  
...  

2010 ◽  
Vol 10 (18) ◽  
pp. 8933-8945 ◽  
Author(s):  
X.-F. Huang ◽  
L.-Y. He ◽  
M. Hu ◽  
M. R. Canagaratna ◽  
Y. Sun ◽  
...  

Abstract. As part of Campaigns of Air Quality Research in Beijing and Surrounding Region-2008 (CAREBeijing-2008), an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in urban Beijing to characterize submicron aerosol particles during the time of 2008 Beijing Olympic Games and Paralympic Games (24 July to 20 September 2008). The campaign mean PM1 mass concentration was 63.1 ± 39.8 μg m−3; the mean composition consisted of organics (37.9%), sulfate (26.7%), ammonium (15.9%), nitrate (15.8%), black carbon (3.1%), and chloride (0.87%). The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at about 600 nm in vacuum aerodynamic diameter, and organics was characterized by an additional smaller mode extending below 100 nm. Positive Matrix Factorization (PMF) analysis of the high resolution organic mass spectral dataset differentiated the organic aerosol into four components, i.e., hydrocarbon-like (HOA), cooking-related (COA), and two oxygenated organic aerosols (OOA-1 and OOA-2), which on average accounted for 18.1, 24.4, 33.7 and 23.7% of the total organic mass, respectively. The HOA was identified to be closely associated with primary combustion sources, while the COA mass spectrum and diurnal pattern showed similar characteristics to that measured for cooking emissions. The OOA components correspond to aged secondary organic aerosol. Although the two OOA components have similar elemental (O/C, H/C) compositions, they display differences in mass spectra and time series which appear to correlate with the different source regions sampled during the campaign. Back trajectory clustering analysis indicated that the southerly air flows were associated with the highest PM1 pollution during the campaign. Aerosol particles in southern airmasses were especially rich in inorganic and oxidized organic species. Aerosol particles in northern airmasses contained a large fraction of primary HOA and COA species, probably due to stronger influences from local emissions. The lowest concentration levels for all major species were obtained during the Olympic game days (8 to 24 August 2008), possibly due to the effects of both strict emission controls and favorable meteorological conditions.


2012 ◽  
Vol 12 (24) ◽  
pp. 11795-11817 ◽  
Author(s):  
J. S. Craven ◽  
L. D. Yee ◽  
N. L. Ng ◽  
M. R. Canagaratna ◽  
C. L. Loza ◽  
...  

Abstract. Positive matrix factorization (PMF) of high-resolution laboratory chamber aerosol mass spectra is applied for the first time, the results of which are consistent with molecular level MOVI-HRToF-CIMS aerosol-phase and CIMS gas-phase measurements. Secondary organic aerosol was generated by photooxidation of dodecane under low-NOx conditions in the Caltech environmental chamber. The PMF results exhibit three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. The slope of the measured high-resolution aerosol mass spectrometer (HR-ToF-AMS) composition data on a Van Krevelen diagram is consistent with that of other low-NOx alkane systems in the same O : C range. Elemental analysis of the PMF factor mass spectral profiles elucidates the combinations of functionality that contribute to the slope on the Van Krevelen diagram.


Sign in / Sign up

Export Citation Format

Share Document