scholarly journals Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany

2021 ◽  
Vol 21 (19) ◽  
pp. 14591-14630
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Florian Filipitsch ◽  
Stefan Wacker ◽  
Stefanie Meilinger ◽  
...  

Abstract. The clear-sky radiative effect of aerosol–radiation interactions is of relevance for our understanding of the climate system. The influence of aerosol on the surface energy budget is of high interest for the renewable energy sector. In this study, the radiative effect is investigated in particular with respect to seasonal and regional variations for the region of Germany and the year 2015 at the surface and top of atmosphere using two complementary approaches. First, an ensemble of clear-sky models which explicitly consider aerosols is utilized to retrieve the aerosol optical depth and the surface direct radiative effect of aerosols by means of a clear-sky fitting technique. For this, short-wave broadband irradiance measurements in the absence of clouds are used as a basis. A clear-sky detection algorithm is used to identify cloud-free observations. Considered are measurements of the short-wave broadband global and diffuse horizontal irradiance with shaded and unshaded pyranometers at 25 stations across Germany within the observational network of the German Weather Service (DWD). The clear-sky models used are the Modified MAC model (MMAC), the Meteorological Radiation Model (MRM) v6.1, the Meteorological–Statistical solar radiation model (METSTAT), the European Solar Radiation Atlas (ESRA), Heliosat-1, the Center for Environment and Man solar radiation model (CEM), and the simplified Solis model. The definition of aerosol and atmospheric characteristics of the models are examined in detail for their suitability for this approach. Second, the radiative effect is estimated using explicit radiative transfer simulations with inputs on the meteorological state of the atmosphere, trace gases and aerosol from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. The aerosol optical properties (aerosol optical depth, Ångström exponent, single scattering albedo and asymmetry parameter) are first evaluated with AERONET direct sun and inversion products. The largest inconsistency is found for the aerosol absorption, which is overestimated by about 0.03 or about 30 % by the CAMS reanalysis. Compared to the DWD observational network, the simulated global, direct and diffuse irradiances show reasonable agreement within the measurement uncertainty. The radiative kernel method is used to estimate the resulting uncertainty and bias of the simulated direct radiative effect. The uncertainty is estimated to −1.5 ± 7.7 and 0.6 ± 3.5 W m−2 at the surface and top of atmosphere, respectively, while the annual-mean biases at the surface, top of atmosphere and total atmosphere are −10.6, −6.5 and 4.1 W m−2, respectively. The retrieval of the aerosol radiative effect with the clear-sky models shows a high level of agreement with the radiative transfer simulations, with an RMSE of 5.8 W m−2 and a correlation of 0.75. The annual mean of the REari at the surface for the 25 DWD stations shows a value of −12.8 ± 5 W m−2 as the average over the clear-sky models, compared to −11 W m−2 from the radiative transfer simulations. Since all models assume a fixed aerosol characterization, the annual cycle of the aerosol radiation effect cannot be reproduced. Out of this set of clear-sky models, the largest level of agreement is shown by the ESRA and MRM v6.1 models.

2021 ◽  
Author(s):  
Jonas Witthuhn ◽  
Anja Hünerbein ◽  
Florian Filipitsch ◽  
Stefan Wacker ◽  
Stefanie Meilinger ◽  
...  

Abstract. The clear-sky radiative effect of aerosol-radiation interactions is of relevance for our understanding of the climate system. The influence of aerosol on the surface energy budget is of high interest for the renewable energy sector. In this study, the radiative effect is investigated in particular with respect to seasonal and regional variations for the region of Germany and the year 2015 at the surface and top of atmosphere using two complementary approaches. First, an ensemble of clear-sky models which explicitly consider aerosols is utilized to retrieve the aerosol optical depth and the surface direct radiative effect of aerosols by means of a clear sky fitting technique. For this, short-wave broadband irradiance measurements in the absence of clouds are used as a basis. A clear sky detection algorithm is used to identify cloud free observations. Considered are measurements of the shortwave broadband global and diffuse horizontal irradiance with shaded and unshaded pyranometers at 25 stations across Germany within the observational network of the German Weather Service (DWD). Clear sky models used are MMAC, MRMv6.1, METSTAT, ESRA, Heliosat-1, CEM and the simplified Solis model. The definition of aerosol and atmospheric characteristics of the models are examined in detail for their suitability for this approach. Second, the radiative effect is estimated using explicit radiative transfer simulations with inputs on the meteorological state of the atmosphere, trace-gases and aerosol from CAMS reanalysis. The aerosol optical properties (aerosol optical depth, Ångström exponent, single scattering albedo and assymetrie parameter) are first evaluated with AERONET direct sun and inversion products. The largest inconsistency is found for the aerosol absorption, which is overestimated by about 0.03 or about 30 % by the CAMS reanalysis. Compared to the DWD observational network, the simulated global, direct and diffuse irradiances show reasonable agreement within the measurement uncertainty. The radiative kernel method is used to estimate the resulting uncertainty and bias of the simulated direct radiative effect. The uncertainty is estimated to −1.5 ± 7.7 and 0.6 ± 3.5 W m−2 at the surface and top of atmosphere, respectively, while the annual-mean biases at the surface, top of atmosphere and total atmosphere are −10.6, −6.5 and 4.1 W m−2, respectively. The retrieval of the aerosol radiative effect with the clear sky models shows a high level of agreement with the radiative transfer simulations, with an RMSE of 5.8 W m−2 and a correlation of 0.75. The annual mean of the REari at the surface for the 25 DWD stations shows a value of −12.8 ± 5 W m−2 as average over the clear sky models, compared to −11 W m−2 from the radiative transfer simulations. Since all models assume a fixed aerosol characterisation, the annual cycle of the aerosol radiation effect cannot be reproduced. Out of this set of clear sky models, the largest level of agreement is shown by the ESRA and MRMv6.1 models.


2011 ◽  
Vol 11 (7) ◽  
pp. 3281-3289 ◽  
Author(s):  
J. Xu ◽  
C. Li ◽  
H. Shi ◽  
Q. He ◽  
L. Pan

Abstract. This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.


2012 ◽  
Vol 512-515 ◽  
pp. 190-193
Author(s):  
Zhi Min Wang ◽  
Ya Hui Wang ◽  
Rui Tian ◽  
Jing Jing Wang

The data of four sets of the sun radiation testing system in Hohhot was processed by the method of standard deviation to get the highest relative accuracy as a model with data. By comparing the measuring value with the calculating value of clear-sky solar radiation model established, it is found the model is only fit for the sunny day, moreover the lager percentage of sunshine is, the model is more appropriate. This model can meet the practical needs of general engineering and also can be used in the analysis of building energy efficiency


2012 ◽  
Vol 30 (3) ◽  
pp. 573-582 ◽  
Author(s):  
X. Xia

Abstract. An updated analysis of cloud cover during 1954–2005 in China was performed using homogeneous cloud cover data from 314 stations. Long-term changes in frequencies of different cloud cover categories and their contributions to long-term changes in cloud cover were assessed. Furthermore, aerosol effects on cloud cover trends were discussed based on comparison of cloud cover trends in polluted and mildly polluted regions. Frequencies of clear sky (cloud cover <20%) and overcast days (cloud cover >80%) were observed to increase by ~2.2 days and decrease by ~3.3 days per decade, respectively, which accounts for ~80% of cloud cover reduction. Larger decreasing trends in cloud cover due to larger increase in clear sky frequency and larger decreases in overcast frequency were observed at stations with lower aerosol optical depth. There is no significant difference in trends regarding cloud cover, clear sky frequency, and overcast frequency between mountain and plain stations. These results are inconsistent with our expectation that larger decreasing trends in cloud cover should have been observed in regions with higher aerosol loading where more aerosols could lead to stronger obscuring effect on ground observation of cloud cover and stronger radiative effect as compared with the mildly polluted regions. Aerosol effect on decreasing cloud cover in China appear not to be supported by this analysis and therefore, further study on this issue is required.


2011 ◽  
Vol 11 (1) ◽  
pp. 627-652
Author(s):  
J. Xu ◽  
C. Li ◽  
H. Shi ◽  
Q. He ◽  
L. Pan

Abstract. This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.


2016 ◽  
Vol 16 (9) ◽  
pp. 5933-5948 ◽  
Author(s):  
Emily Gleeson ◽  
Velle Toll ◽  
Kristian Pagh Nielsen ◽  
Laura Rontu ◽  
Ján Mašek

Abstract. The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational – High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of −11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical profiles were investigated. The shortwave heating rates in the boundary layer changed by up to a factor of 2 in response to the aerosol vertical distribution without changing the total aerosol optical depth. Finally, we tested the radiative transfer approximations used in the three radiation schemes for typical aerosol optical properties compared to the accurate DISORT model. These approximations are found to be accurate to within ±13 % even for large aerosol loads.


Sign in / Sign up

Export Citation Format

Share Document