scholarly journals Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

2016 ◽  
Vol 16 (9) ◽  
pp. 5933-5948 ◽  
Author(s):  
Emily Gleeson ◽  
Velle Toll ◽  
Kristian Pagh Nielsen ◽  
Laura Rontu ◽  
Ján Mašek

Abstract. The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational – High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of −11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical profiles were investigated. The shortwave heating rates in the boundary layer changed by up to a factor of 2 in response to the aerosol vertical distribution without changing the total aerosol optical depth. Finally, we tested the radiative transfer approximations used in the three radiation schemes for typical aerosol optical properties compared to the accurate DISORT model. These approximations are found to be accurate to within ±13 % even for large aerosol loads.

2014 ◽  
Vol 7 (1) ◽  
pp. 593-629
Author(s):  
J. A. Ruiz-Arias ◽  
J. Dudhia

Abstract. Broadband short-wave (SW) surface direct and diffuse irradiances are not typically within the set of output variables produced by numerical weather prediction (NWP) models. However, they are being more and more demanded in solar energy applications. A detailed representation of the aerosol optical properties is important to achieve an accurate assessment of these direct and diffuse irradiances. Nonetheless, NWP models typically oversimplify its representation or even neglect its effect. In this work, a flexible method to account for the SW aerosol optical properties in the computation of broadband SW surface direct and diffuse irradiances is presented. It only requires aerosol optical depth at 0.55 μm and the type of predominant aerosol. The rest of parameters needed to consider spectral aerosol extinction, namely, Angström exponent, aerosol single-scattering albedo and aerosol asymmetry factor, are parameterized. The parameterization has been tested in the RRTMG SW scheme of the Weather Research and Forecasting (WRF) NWP model. However, it can be adapted to any other SW radiative transfer band model. It has been verified against a control experiment along five radiometric stations in the contiguous US. The control experiment consisted of a clear-sky evaluation of the RRTMG solar radiation estimates obtained in WRF when RRTMG is driven with ground-observed aerosol optical properties. Overall, the verification has shown very satisfactory results for both broadband SW surface direct and diffuse irradiances. It has proven effective to significantly reduce the prediction error and constraint the seasonal bias in clear-sky conditions to within the typical observational error in well-maintained radiometers.


2005 ◽  
Vol 133 (4) ◽  
pp. 783-792 ◽  
Author(s):  
Robert J. Zamora ◽  
Ellsworth G. Dutton ◽  
Michael Trainer ◽  
Stuart A. McKeen ◽  
James M. Wilczak ◽  
...  

In this paper, solar irradiance forecasts made by mesoscale numerical weather prediction models are compared with observations taken during three air-quality experiments in various parts of the United States. The authors evaluated the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and the National Centers for Environmental Prediction (NCEP) Eta Model. The observations were taken during the 2000 Texas Air Quality Experiment (TexAQS), the 2000 Central California Ozone Study (CCOS), and the New England Air Quality Study (NEAQS) 2002. The accuracy of the model forecast irradiances show a strong dependence on the aerosol optical depth. Model errors on the order of 100 W m−2 are possible when the aerosol optical depth exceeds 0.1. For smaller aerosol optical depths, the climatological attenuation used in the models yields solar irradiance estimates that are in good agreement with the observations.


2014 ◽  
Vol 7 (3) ◽  
pp. 1159-1174 ◽  
Author(s):  
J. A. Ruiz-Arias ◽  
J. Dudhia ◽  
C. A. Gueymard

Abstract. Broadband short-wave (SW) surface direct and diffuse irradiances are not typically within the set of output variables produced by numerical weather prediction (NWP) models. However, they are frequently requested for solar energy applications. In order to compute them, a detailed representation of the aerosol optical properties is important. Nonetheless, NWP models typically oversimplify aerosol representation or even neglect their effect. In this work, a flexible method to account for the SW aerosol optical properties in the computation of broadband SW surface direct and diffuse irradiances is presented. It only requires aerosol optical depth at 0.55 μm and knowledge of the type of predominant aerosol. Other parameters needed to consider spectral aerosol extinction, namely, Angström exponent, aerosol single-scattering albedo and aerosol asymmetry factor, are parameterized. The parameterization has been tested using the Rapid Radiative Transfer Model for climate and weather models (RRTMG) SW scheme of the Weather Research and Forecasting (WRF) NWP model for data over the continental US. In principle, it can be adapted to any other SW radiative transfer band model. It has been verified against a control experiment and using data from five radiometric stations in the contiguous US. The control experiment consisted of a clear-sky evaluation of the RRTMG solar radiation estimates obtained in WRF when RRTMG is driven with ground-observed aerosol optical properties. Overall, the verification has shown satisfactory results for both broadband SW surface direct and diffuse irradiances. The parameterization has proven effective in significantly reducing the prediction error and constraining the seasonal bias in clear-sky conditions to within the typical observational error expected in well maintained radiometers.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


2020 ◽  
Vol 12 (17) ◽  
pp. 2758
Author(s):  
Stuart Fox

The Ice Cloud Imager (ICI) will be launched on the next generation of EUMETSAT polar-orbiting weather satellites and make passive observations between 183 and 664 GHz which are sensitive to scattering from cloud ice. These observations have the potential to improve weather forecasts through direct assimilation using "all-sky" methods which have been successfully applied to microwave observations up to 200 GHz in current operational systems. This requires sufficiently accurate representations of cloud ice in both numerical weather prediction (NWP) and radiative transfer models. In this study, atmospheric fields from a high-resolution NWP model are used to drive radiative transfer simulations using the Atmospheric Radiative Transfer Simulator (ARTS) and a recently released database of cloud ice optical properties. The simulations are evaluated using measurements between 89 and 874 GHz from five case studies of ice and mixed-phase clouds observed by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft. The simulations are strongly sensitive to the assumed cloud ice optical properties, but by choosing an appropriate ice crystal model it is possible to simulate realistic brightness temperatures over the full range of sub-millimetre frequencies. This suggests that sub-millimetre observations have the potential to be assimilated into NWP models using the all-sky method.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Laura Rontu ◽  
Emily Gleeson ◽  
Daniel Martin Perez ◽  
Kristian Pagh Nielsen ◽  
Velle Toll

The direct radiative effect of aerosols is taken into account in many limited-area numerical weather prediction models using wavelength-dependent aerosol optical depths of a range of aerosol species. We studied the impact of aerosol distribution and optical properties on radiative transfer, based on climatological and more realistic near real-time aerosol data. Sensitivity tests were carried out using the single-column version of the ALADIN-HIRLAM numerical weather prediction system, set up to use the HLRADIA simple broadband radiation scheme. The tests were restricted to clear-sky cases to avoid the complication of cloud–radiation–aerosol interactions. The largest differences in radiative fluxes and heating rates were found to be due to different aerosol loads. When the loads are large, the radiative fluxes and heating rates are sensitive to the aerosol inherent optical properties and the vertical distribution of the aerosol species. In such cases, regional weather models should use external real-time aerosol data for radiation parametrizations. Impacts of aerosols on shortwave radiation dominate longwave impacts. Sensitivity experiments indicated the important effects of highly absorbing black carbon aerosols and strongly scattering desert dust.


2016 ◽  
Vol 172-173 ◽  
pp. 163-173 ◽  
Author(s):  
V. Toll ◽  
E. Gleeson ◽  
K.P. Nielsen ◽  
A. Männik ◽  
J. Mašek ◽  
...  

Author(s):  
Laura Rontu ◽  
Emily Gleeson ◽  
Daniel Martin Perez ◽  
Kristian Pagh Nielsen ◽  
Velle Toll

The direct radiative effect of aerosols is taken into account in many limited area numerical weather prediction models using wavelength-dependent aerosol optical depths of a range of aerosol species. We study the impact of aerosol distribution and optical properties on radiative transfer, based on climatological and more realistic near real-time aerosol data. Sensitivity tests were carried out using the single column version of the ALADIN-HIRLAM numerical weather prediction system, set up to use the HLRADIA broadband radiation scheme. The tests were restricted to clear-sky cases to avoid the complication of cloud-radiation-aerosol interactions. The largest differences in radiative fluxes and heating rates were found to be due to different aerosol loads. When the loads are large, the radiative fluxes and heating rates are sensitive to the aerosol inherent optical properties and vertical distribution of the aerosol species. Impacts of aerosols on shortwave radiation dominate longwave impacts. Sensitivity experiments indicated the important effects of highly absorbing black carbon aerosols and strongly scattering desert dust.


Sign in / Sign up

Export Citation Format

Share Document