scholarly journals Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography

2021 ◽  
Vol 21 (7) ◽  
pp. 5477-5498
Author(s):  
Maxi Boettcher ◽  
Andreas Schäfler ◽  
Michael Sprenger ◽  
Harald Sodemann ◽  
Stefan Kaufmann ◽  
...  

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and T-NAWDEX-Falcon in October 2012, a preparatory campaign for the THORPEX North Atlantic Waveguide and Downstream Impact Experiment (T-NAWDEX). Trajectories were used to link different observations along the WCB, that is, to establish so-called Lagrangian matches between observations. To this aim, an ensemble of wind fields from the global analyses produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble of Data Assimilations (EDA) system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the German Aerospace Center (DLR) Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations, the confirmation of the WCB transport by an inert tracer and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs.

2020 ◽  
Author(s):  
Maxi Boettcher ◽  
Andreas Schäfler ◽  
Michael Sprenger ◽  
Harald Sodemann ◽  
Stefan Kaufmann ◽  
...  

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the field experiments HyMeX and T-NAWDEX-Falcon in October 2012. Trajectories were used to link different observations along the WCB, that is to establish so-called Lagrangian matches between observations. To this aim, wind fields of the ECMWF ensemble data assimilation system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the DLR Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches, Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps, and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations and confirmed by an inert tracer, and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs.


2020 ◽  
Author(s):  
Maxi Boettcher ◽  
Andreas Schäfler ◽  
Harald Sodemann ◽  
Michael Sprenger ◽  
Stefan Kaufmann ◽  
...  

<p>Warm conveyor belts (WCBs) are important airstreams in extratropical<br>cyclones, leading to the formation of intense precipitation<br>and the transport of substantial amounts of water vapour upward and<br>poleward. This study presents a scenario of a WCB that ascended from<br>western Europe towards the Baltic Sea using aircraft, lidar and<br>radar observations from the field experiments HyMeX and<br>T-NAWDEX-Falcon in October 2012.<br>Trajectories based on the ensemble data assimilation<br>system of the ECMWF are used to quantify probabilistically<br>the occurrence of the WCB and Lagrangian matches<br>between different observations. Despite severe limitations<br>for research flights over Europe, the DLR Falcon successfully<br>sampled WCB air masses during different phases of<br>the ascent. The overall picture of the WCB trajectories revealed<br>measurements in several WCB branches: trajectories<br>that ascended from the East Atlantic over northern France<br>while others had their inflow in the western Mediterranean<br>region and passed across the Alps. For the latter ones, Lagrangian<br>matches coincidentally occurred between lidar water<br>vapour measurements in the inflow of the WCB south,<br>radar measurements during the ascent at and its outflow<br>north of the Alps during a mid-tropospheric flight leg over<br>Germany.<br>The comparison of observations and ensemble analyses<br>reveals a moist bias of the analyses in parts of the WCB inflow<br>and an underestimation of cloud water species in the<br>WCB during ascent. In between, the radar instrument measured<br>strongly precipitating WCB air mass with embedded<br>linking trajectories directly above the melting layer while<br>orographically ascending at the southern slops of the Alps.<br>An inert tracer air mass could confirm the long pathway<br>of WCB air from the inflow in the marine boundary layer<br>until the outflow in the upper troposhpere near the Baltic<br>sea several hours later. This case study illustrates the complexity<br>of the interaction of WCBs with the Alpine topography,<br>which leads to (i) various pathways over and around<br>the Alpine crest and (ii) locally steep WCB ascent with increased<br>cloud content that might result in enhancement<br>of precipitation where the WCB flows over the Alps. The<br>combination of observational data and detailed ensemble-based<br>trajectory calculations reveals important aspects of<br>orographically-modified WCBs.</p>


2009 ◽  
Vol 407 (13) ◽  
pp. 4174-4183 ◽  
Author(s):  
Hrönn Jörundsdóttir ◽  
Anders Bignert ◽  
Jörundur Svavarsson ◽  
Torgeir Nygård ◽  
Pál Weihe ◽  
...  

2021 ◽  
Author(s):  
Fatemeh Najafzadeh ◽  
Nadezhda Kudryavtseva ◽  
Tarmo Soomere

Abstract Wave heights in the Baltic Sea in 1992–2015 have predominantly increased in the sea's western parts. The linear trends in the winter wave heights exhibit a prominent meridional pattern. Using the technique of Empirical Orthogonal Functions (EOF) applied to the multi-mission satellite altimetry data, we link a large part of this increase in the wave heights with the climatic indices of the Scandinavian mode, North Atlantic Oscillation, and Arctic Oscillation. The winter trends show a statistically significant negative correlation (correlation coefficient –0.47±0.19) with the Scandinavian pattern and a positive correlation with the North Atlantic Oscillation (0.31±0.22) and Arctic Oscillation (0.42±0.20). The meridional pattern is associated with more predominant north-westerly and westerly winds driven by the Scandinavian and North Atlantic Oscillation, respectively. All three climatic indices show a statistically significant time-variable correlation with Baltic Sea wave climate during the winter season. When the Scandinavian pattern's influence is strong, North Atlantic and Arctic Oscillations' effect is low and vice versa. The results are backed up by simulations using synthetic data that demonstrate that the percentage of variance retrieved using EOF analysis from the satellite-derived wave measurements is directly related to the percentage of noise in the data and the retrieved spatial patterns are insensitive to the level of noise.


Author(s):  
Eric Schnakenbourg

In the Early Modern era, the Baltic Sea was called the Nordic Mediterranean because of its unique outlet on the high seas and its narrowness. Like its southern counterpart, the Baltic is at the crossroads of several peoples and cultures. Also like the Mediterranean Sea, the Baltic had different populations on each of its shores, yet in another way facilitated relations and became a space for interconnections. Throughout its history, peoples from Scandinavia, Poland, Germany, Russia, and the Baltic lands developed not only all sorts of peaceful relations and exchanges, but also competed with each other in long-lasting rivalries or military confrontations. Between the 16th century and the first half of the 19th century, the Baltic region experienced dramatic internal and external changes resulting from its ever-growing connections with the rest of Europe. Baltic issues, however, did not have the same importance for all the surrounding countries: it was the only horizon for Sweden, which enjoyed sovereignty over Finland until 1809, and the main horizon for Denmark, which ruled Norway until 1814. For Scandinavians, the Baltic Sea was a necessary interface for various kinds of exchanges with the external world, whether regional neighbors or continental Europe. In one way or another, the history of the Swedish and Danish kingdoms is interwoven with the history of the Baltic. Scandinavians devoted great attention to this neighboring sea for their shipping and trade, as well as for their security and political influence. The situation is somewhat similar for the Baltic provinces (Estonia, Livonia, and Ingria), which were always under foreign rule, first Swedish then Russian, in the Early Modern period. On the other side of the sea, for the German states, the Polish Republic, and the Russian Empire, the Baltic was simply one theater of foreign policy among others, even though its importance changed over time according to the political or economic context. As for commerce, while during the Middle Ages the Baltic region traded with the rest of Europe, starting in the 16th century, the situation changed as the continental economy shifted from the Mediterranean to the northwest. European population growth and the development of long-distance shipping and commerce meant increasing needs for grain and naval stores. This created new demand for Baltic economic resources and products and for transporting those exports. Consequently, new international rivalries and struggles occurred in the Baltic. At first, these conflicts were among the regional countries, but increasingly the main European powers as well. The Baltic Sea then became an important theater for European international politics, and almost every continental war had a Baltic component. The history of the Baltic Sea from the 16th century to the middle of the 19th century must be considered from two perspectives: first, relations among the regional countries and peoples; and second, relations with the world outside the Baltic, whether foreign powers and regions or even other seas, for political, military, and trade matters.


Sign in / Sign up

Export Citation Format

Share Document