scholarly journals Urban aerosol size distributions: a global perspective

2021 ◽  
Vol 21 (11) ◽  
pp. 8883-8914
Author(s):  
Tianren Wu ◽  
Brandon E. Boor

Abstract. Urban aerosol measurements are necessary to establish associations between air pollution and human health outcomes and to evaluate the efficacy of air quality legislation and emissions standards. The measurement of urban aerosol particle size distributions (PSDs) is of particular importance as they enable characterization of size-dependent processes that govern a particle's transport, transformation, and fate in the urban atmosphere. PSDs also improve our ability to link air pollution to health effects through evaluation of particle deposition in the respiratory system and inhalation toxicity. To inform future measurements of urban aerosol observations, this paper reviews and critically analyzes the current state of knowledge on urban aerosol PSD measurements by synthesizing 737 PSD observations made between 1998 to 2017 in 114 cities in 43 countries around the globe. Significant variations in the shape and magnitude of urban aerosol number and mass PSDs were identified among different geographical regions. In general, number PSDs in Europe (EU) and North America, Australia, and New Zealand (NAAN) are dominated by nucleation- and Aitken-mode particles. PSDs in Central, South, and Southeast Asia (CSSA) and East Asia (EA) are shifted to larger sizes, with a meaningful contribution from the accumulation mode. Urban mass PSDs are typically bimodal, presenting a dominant mode in the accumulation mode and a secondary mode in the coarse mode. Most PSD observations published in the literature are short-term, with only 14 % providing data for longer than 6 months. There is a paucity of PSDs measured in Africa (AF), CSSA, Latin America (LA), and West Asia (WA), demonstrating the need for long-term aerosol measurements across wide size ranges in many cities around the globe. Geographical variations in urban aerosol effective densities were also reviewed. Size-resolved urban aerosol effective density functions from 3 to 10 000 nm were established for different geographical regions and intra-city sampling locations in order to accurately translate number PSDs to mass PSDs, with significant variations observed between near-road and urban background sites. The results of this study demonstrate that global initiatives are urgently needed to develop infrastructure for routine and long-term monitoring of urban aerosol PSDs spanning the nucleation to coarse mode. Doing so will advance our understanding of spatiotemporal trends in urban PSDs throughout the world and provide a foundation to more reliably elucidate the impact of urban aerosols on atmospheric processes, human health, and climate.

2020 ◽  
Author(s):  
Tianren Wu ◽  
Brandon E. Boor

Abstract. Urban aerosol measurements are necessary to establish associations between air pollution and human health outcomes and to evaluate the efficacy of air quality legislation and emissions standards. The measurement of urban aerosol particle size distributions (PSDs) is of particular importance as they enable for characterization of size-dependent processes that govern a particle’s transport, transformation, and fate in the urban atmosphere. PSDs also improve our ability to link air pollution to health effects through evaluation of particle deposition in the respiratory system and inhalation toxicity. To provide guidance for the evolution of urban aerosol observations, this paper reviews and critically analyzes the current state-of-knowledge on urban aerosol PSD measurements by synthesizing n = 793 PSD observations made between 1998 to 2017 in n = 125 cities in n = 51 countries around the globe. Significant variations in the shape and magnitude of urban aerosol number and mass PSDs were identified among different geographical regions. In general, number PSDs in Europe (EU), North America, Australia, and New Zealand (NAAN) are dominated by nucleation and Aitken mode particles. PSDs in Central, South, and Southeast Asia (CSSA) and East Asia (EA) are shifted to larger sizes, with a meaningful contribution from the accumulation mode. Urban mass PSDs are typically bi-modal, presenting a dominant peak in the accumulation mode and a secondary peak in the coarse mode. Most PSD observations published in the literature are short-term, with only 14 % providing data for longer than six months. There is a paucity of PSDs measured in Africa (AF), CSSA, Latin America (LA), and West Asia (WA), demonstrating the need for long-term aerosol measurements across wide size ranges in many cities around the globe. Inter-region variations in PSDs have important implications for population exposure, driving large differences in the urban aerosol inhaled deposited dose rate received in each region of the human respiratory system. Similarly, inter-region variations in the shape of PSDs impact the penetration of urban aerosols through filters in building ventilation systems, which serve as an important interface between the outdoor and indoor atmospheres. Geographical variations in urban aerosol effective densities were also reviewed. Size-resolved urban aerosol effective density functions from 3 to 10 000 nm were established for different geographical regions and intra-city sampling locations in order to accurately translate number PSDs to mass PSDs, with significant variations observed between near-road and urban background sites. The results of this critical review demonstrate that global initiatives are urgently needed to develop infrastructure for routine and long-term monitoring of urban aerosol PSDs spanning the nucleation to coarse modes. Doing so will advance our understanding of spatiotemporal trends in urban PSDs throughout the world and provide a foundation to more reliably elucidate the impact of urban aerosols on atmospheric processes, human health, and climate.


2014 ◽  
Vol 955-959 ◽  
pp. 1397-1404 ◽  
Author(s):  
Li Na Shi ◽  
Xun Xu ◽  
Xiao Yan Dou ◽  
Xu Dong Zhao

PM2.5 is one of the most important components in air pollution. It is also the focus of the most closely watched at home and abroad. Based on its small size, complex components, and strongenvironmental activity, it can be used as a carrier for chemicals, heavy metals, bacteria, toxins and carcinogens into the body. Then, as a result, it will affect Human Body Health. Heavy metals are important components of PM2.5, and the long-term accumulation of heavy metals in PM2.5 poses a great threat on human health and the environment. This paper reviewed the sources, distribution methods,chemical form, detection methods, disposal way, research progress of heavy metals in PM2.5. As a result, it provided a reference for in-depth study on the future.


2012 ◽  
Vol 18 (4-2) ◽  
pp. 617-622 ◽  
Author(s):  
Zorana Jovanovic-Andersen

Large number of studies provided convincing evidence for adverse effects of exposure to outdoor air pollution on human health, and served as basis for current USA and EU Air Quality Standards and limit values. Still, new knowledge is emerging, expanding our understanding of vast effects of exposure to air pollution on human health of this ubiquitous exposure affecting millions of people in urban setting. This paper focuses on the studies of health effects of long-term (chronic) exposures to air pollution, and includes major chronic and acute diseases in adults and especially elderly, which will present increasing public health burden, due to improving longevity and projected increasing numbers of elderly. The paper gives overview over the most relevant and latest literature presented by different health outcomes: chronic obstructive pulmonary disease, asthma, pneumonia, cardiovascular disease, and diabetes.


2014 ◽  
Vol 24 (1) ◽  
pp. 6
Author(s):  
R. Beelen ◽  
O. Raaschou-Nielsen ◽  
M. Stafoggia ◽  
Z.J. Andersen ◽  
G. Weinmayr ◽  
...  

2016 ◽  
Vol 16 (15) ◽  
pp. 9727-9743 ◽  
Author(s):  
James D. Whitehead ◽  
Eoghan Darbyshire ◽  
Joel Brito ◽  
Henrique M. J. Barbosa ◽  
Ian Crawford ◽  
...  

Abstract. The Amazon basin is a vast continental area in which atmospheric composition is relatively unaffected by anthropogenic aerosol particles. Understanding the properties of the natural biogenic aerosol particles over the Amazon rainforest is key to understanding their influence on regional and global climate. While there have been a number of studies during the wet season, and of biomass burning particles in the dry season, there has been relatively little work on the transition period – the start of the dry season in the absence of biomass burning. As part of the Brazil–UK Network for Investigation of Amazonian Atmospheric Composition and Impacts on Climate (BUNIAACIC) project, aerosol measurements, focussing on unpolluted biogenic air masses, were conducted at a remote rainforest site in the central Amazon during the transition from wet to dry season in July 2013. This period marks the start of the dry season but before significant biomass burning occurs in the region. Median particle number concentrations were 266 cm−3, with size distributions dominated by an accumulation mode of 130–150 nm. During periods of low particle counts, a smaller Aitken mode could also be seen around 80 nm. While the concentrations were similar in magnitude to those seen during the wet season, the size distributions suggest an enhancement in the accumulation mode compared to the wet season, but not yet to the extent seen later in the dry season, when significant biomass burning takes place. Submicron nonrefractory aerosol composition, as measured by an aerosol chemical speciation monitor (ACSM), was dominated by organic material (around 81 %). Aerosol hygroscopicity was probed using measurements from a hygroscopicity tandem differential mobility analyser (HTDMA), and a quasi-monodisperse cloud condensation nuclei counter (CCNc). The hygroscopicity parameter, κ, was found to be low, ranging from 0.12 for Aitken-mode particles to 0.18 for accumulation-mode particles. This was consistent with previous studies in the region, but lower than similar measurements conducted in Borneo, where κ ranged 0.17–0.37. A wide issue bioaerosol sensor (WIBS-3M) was deployed at ground level to probe the coarse mode, detecting primary biological aerosol by fluorescence (fluorescent biological aerosol particles, or FBAPs). The mean FBAP number concentration was 400 ± 242 L−1; however, this ranged from around 200 L−1 during the day to as much as 1200 L−1 at night. FBAPs dominated the coarse-mode particles, comprising between 55 and 75 % of particles during the day to more than 90 % at night. Non-FBAPs did not show a strong diurnal pattern. Comparison with previous FBAP measurements above canopy at the same location suggests there is a strong vertical gradient in FBAP concentrations through the canopy. Cluster analysis of the data suggests that FBAPs were dominated (around 70 %) by fungal spores. Further, long-term measurements will be required in order to fully examine the seasonal variability and distribution of primary biological aerosol particles through the canopy. This is the first time that such a suite of measurements has been deployed at this site to investigate the chemical composition and properties of the biogenic contributions to Amazonian aerosol during the transition period from the wet to the dry season, and thus provides a unique comparison to the aerosol properties observed during the wet season in previous similar campaigns. This was also the first deployment of a WIBS in the Amazon rainforest to study coarse-mode particles, particularly primary biological aerosol particles, which are likely to play an important role as ice nuclei in the region.


2004 ◽  
Vol 4 (2) ◽  
pp. 391-411 ◽  
Author(s):  
T. Hussein ◽  
A. Puustinen ◽  
P. P. Aalto ◽  
J. M. Mäkelä ◽  
K. Hämeri ◽  
...  

Abstract. Aerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (Dp<30nm), Aitken mode (20-100nm) and accumulation mode (Dp>90nm). Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001), the arithmetic means of the particle number concentrations were 7000cm-3, 6500cm-3, and 1000cm-3 respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003) they were 5500cm-3, 4000cm-3, and 1000cm-3. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites.


2021 ◽  
Vol 631 (1) ◽  
pp. 012023
Author(s):  
Yongjun Zhao ◽  
Teng Ma

Abstract Air pollution has a significant impact on human health and fitness; long-term air pollution will cause human physical fitness to be declined. In order to alleviate the impact of air pollution on human health and fitness, this paper analyzes the sources of air pollution, different air pollution extents have gradient effect on the human body, thereby affecting the body's physical performance indicators. This paper investigates and studies the impact of air pollution on human health and fitness through the survey of students in a school, and provides countermeasures.


2003 ◽  
Vol 3 (5) ◽  
pp. 5139-5184 ◽  
Author(s):  
T. Hussein ◽  
A. Puustinen ◽  
P. P. Aalto ◽  
J. M. Mäkelä ◽  
K. Hämeri ◽  
...  

Abstract. Aerosol number size distributions were measured continuously in Helsinki, Finland from 5 May 1997 to 28 February 2003. The daily, monthly and annual patterns were investigated. The temporal variation of the particle number concentration was seen to follow the traffic density. The highest total particle number concentrations were usually observed during workdays; especially on Fridays, and the lower concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were usually observed during winter and spring and the lowest during June and July. More than 80\\% of the particle number size distributions were tri-modal: nucleation mode (Dp < 30 nm), Aitken mode (20–100 nm) and accumulation mode (Dp > 90 nm). Less than 20% of the particle number size distributions have either two modes or consisted of more than three modes. Two different measurement sites are used; in the first place (Siltavuori, 5 May 1997–5 March 2001), the overall means of the integrated particle number concentrations were 7100 cm−3, 6320 cm−3, and 960 cm−3, respectively, for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6 March 2001–28 February 2003) they were 5670 cm−3, 4050 cm−3, and 900 cm−3. The total number concentration in nucleation and Aitken modes were usually significantly higher during weekdays than during weekends. The variations in accumulation mode were less pronounced. The smaller concentrations in Kumpula were mainly due to building construction and also slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation in both sites.


Sign in / Sign up

Export Citation Format

Share Document