scholarly journals Validation of nitric acid retrieved by the IMK-IAA processor from MIPAS/ENVISAT measurements

2007 ◽  
Vol 7 (3) ◽  
pp. 721-738 ◽  
Author(s):  
D. Y. Wang ◽  
M. Höpfner ◽  
G. Mengistu Tsidu ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO3) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Statistical comparisons of MIPAS IMK-IAA HNO3 VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally ±0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO3 VMR data and the other three satellite data sets.

2006 ◽  
Vol 6 (5) ◽  
pp. 9723-9764
Author(s):  
D. Y. Wang ◽  
M. Höpfner ◽  
G. Mengistu Tsidu ◽  
G. P. Stiller ◽  
T. von Clarmann ◽  
...  

Abstract. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard the ENVISAT satellite provides profiles of temperature and various trace-gases from limb-viewing mid-infrared emission measurements. The stratospheric nitric acid (HNO3) from September 2002 to March 2004 was retrieved from the MIPAS observations using the science-oriented data processor developed at the Institut für Meteorologie und Klimaforschung (IMK), which is complemented by the component of non-local thermodynamic equilibrium (non-LTE) treatment from the Instituto de Astrofísica de Andalucía (IAA). The IMK-IAA research product, different from the ESA operational product, is validated in this paper by comparison with a number of reference data sets. Individual HNO3 profiles of the IMK-IAA MIPAS show good agreement with those of the balloon-borne version of MIPAS (MIPAS-B) and the infrared spectrometer MkIV, with small differences of less than 0.5 ppbv throughout the entire altitude range up to about 38 km, and below 0.2 ppbv above 30 km. However, the degree of consistency is largely affected by their temporal and spatial coincidence, and differences of 1 to 2 ppbv may be observed between 22 and 26 km at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Statistical comparisons of MIPAS IMK-IAA HNO3 VMRs with respect to those of satellite measurements of Odin/SMR, ILAS-II, ACE-FTS, as well as the MIPAS ESA product show good consistency. The mean differences are generally ±0.5 ppbv and standard deviations of the differences are of 0.5 to 1.5 ppbv. The maximum differences are 2.0 ppbv around 20 to 25 km. This gives confidence in the general reliability of MIPAS HNO3 VMR data and the other three satellite data sets.


2008 ◽  
Vol 8 (8) ◽  
pp. 2151-2188 ◽  
Author(s):  
H. Fischer ◽  
M. Birk ◽  
C. Blom ◽  
B. Carli ◽  
M. Carlotti ◽  
...  

Abstract. MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere. The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality. MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September~2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of solar variability on the middle atmosphere, and the observation of Non-LTE effects in the mesosphere.


2007 ◽  
Vol 7 (1) ◽  
pp. 257-281 ◽  
Author(s):  
M. Höpfner ◽  
T. von Clarmann ◽  
H. Fischer ◽  
B. Funke ◽  
N. Glatthor ◽  
...  

Abstract. Altitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30–35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm−2 (1.0±1.1%) and −0.09±0.19×1014 cm−2 (−0.8±1.7%), depending on the coincidence criterion applied. χ2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS – FTIR or MIPAS – ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for χ2 deviations. From the resulting χ2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.


2007 ◽  
Vol 7 (3) ◽  
pp. 8795-8893 ◽  
Author(s):  
H. Fischer ◽  
M. Birk ◽  
C. Blom ◽  
B. Carli ◽  
M. Carlotti ◽  
...  

Abstract. MIPAS, the Michelson Interferometer for Passive Atmospheric Sounding, is a mid-infrared emission spectrometer which is part of the core payload of ENVISAT. It is a limb sounder, i.e. it scans across the horizon detecting atmospheric spectral radiances which are inverted to vertical temperature, trace species and cloud distributions. These data can be used for scientific investigations in various research fields including dynamics and chemistry in the altitude region between upper troposphere and lower thermosphere. The instrument is a well calibrated and characterized Fourier transform spectrometer which is able to detect many trace constituents simultaneously. The different concepts of retrieval methods are described including multi-target and two-dimensional retrievals. Operationally generated data sets consist of temperature, H2O, O3, CH4, N2O, HNO3, and NO2 profiles. Measurement errors are investigated in detail and random and systematic errors are specified. The results are validated by independent instrumentation which has been operated at ground stations or aboard balloon gondolas and aircraft. Intercomparisons of MIPAS measurements with other satellite data have been carried out, too. As a result, it has been proven that the MIPAS data are of good quality. MIPAS can be operated in different measurement modes in order to optimize the scientific output. Due to the wealth of information in the MIPAS spectra, many scientific results have already been published. They include intercomparisons of temperature distributions with ECMWF data, the derivation of the whole NOy family, the study of atmospheric processes during the Antarctic vortex split in September 2002, the determination of properties of Polar Stratospheric Clouds, the downward transport of NOx in the middle atmosphere, the stratosphere-troposphere exchange, the influence of solar variability on the middle atmosphere, and the observation of Non-LTE effects in the mesosphere.


2006 ◽  
Vol 6 (5) ◽  
pp. 9765-9821
Author(s):  
M. Höpfner ◽  
T. von Clarmann ◽  
H. Fischer ◽  
B. Funke ◽  
N. Glatthor ◽  
...  

Abstract. Altitude profiles of ClONO2 retrieved with the IMK (Institut für Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izaña, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30–35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11±0.12×1014 cm−2 (1.0±1.1%) and −0.09±0.19×1014 cm−2 (−0.8±1.7%), depending on the coincidence criterion applied. χ2 tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS – FTIR or MIPAS – ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for χ2 deviations. From the resulting χ2 profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.


2014 ◽  
Vol 7 (3) ◽  
pp. 3021-3073 ◽  
Author(s):  
M. Grossi ◽  
P. Valks ◽  
D. Loyola ◽  
B. Aberle ◽  
S. Slijkhuis ◽  
...  

Abstract. The knowledge of the total column water vapour (TCWV) global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors and perform an extensive inter-comparison and validation in order to estimate their absolute accuracy and long-term stability. We use the recently reprocessed data sets retrieved by the GOME-2 instruments aboard EUMETSAT's MetOp-A and MetOp-B satellites and generated by DLR in the framework of the O3M-SAF using the GOME Data Processor (GDP) version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS) method and combines H2O/O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. We evaluate the overall consistency between about 8 months measurements from the newer GOME-2 instrument on the MetOp-B platform with the GOME-2/MetOp-A data in the overlap period. Furthermore, we compare GOME-2 results with independent TCWV data from ECMWF and with SSMIS satellite measurements during the full period January 2007–August 2013 and we perform a validation against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project. We find global mean biases as small as ± 0.03 g cm−2 between GOME-2A and all other data sets. The combined SSM/I-MERIS sample is typically drier than the GOME-2 retrievals (−0.005 g cm−2), while on average GOME-2 data overestimate the SSMIS measurements by only 0.028 g cm−2. However, the size of some of these biases are seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, but are not as evident in the validation with the ECMWF and the SSM/I + MERIS data. Studying two exemplary months, we estimate regional differences and identify a very good agreement between GOME-2 total columns and all three independent data sets, especially for land areas, although some discrepancies over ocean and over land areas with high humidity and a relatively large surface albedo are also present.


2009 ◽  
Vol 9 (5) ◽  
pp. 22177-22222
Author(s):  
L. W. Thomason ◽  
J. R. Moore ◽  
M. C. Pitts ◽  
J. M. Zawodny ◽  
E.-W. Chiou

Abstract. Herein, we provide an assessment of the data quality of Stratospheric Aerosol and Gas Experiment (SAGE III) Version 4 aerosol extinction coefficient and water vapor data products. The evaluation is based on comparisons with data from four instruments: SAGE II, the Polar Ozone and Aerosol Measurement (POAM III), the Halogen Occultation Experiment (HALOE), and the Microwave Limb Sounder (MLS). Since only about half of the SAGE III channels have a direct comparison with measurements by other instruments, we have employed some empirical techniques to evaluate measurements at some wavelengths. We find that the aerosol extinction coefficient measurements at 449, 520, 755, 869, and 1021 nm are reliable with accuracies and precisions on the order of 10% in the primary aerosol range of 15 to 25 km. We also believe this to be true of the aerosol measurements at 1545 nm though we cannot exclude some positive bias below 15 km. We recommend use of the 385 nm measurements above 16 km where the accuracy is on par with other aerosol channels. The 601 nm measurement is much noisier (~20%) than other channels and we suggest caution in the use of these data. We believe that the 676 nm data are clearly defective particularly above 20 km (accuracy as poor as 50%) and the precision is also low (~30%). We suggest excluding this channel under most circumstances. The SAGE III Version 4 water vapor data product appears to be high quality and is recommended for science applications in the stratosphere below 45 km. In this altitude range, the mean differences with all four corroborative data sets are no bigger than 15% and often less than 10% with exceptional agreement with POAM III and MLS. Above 45 km, it seems likely that SAGE III water vapor values are increasingly too large and should be used cautiously or avoided. We believe that SAGE III meets its preflight goal of 15% accuracy and 10% precision between 15 and 45 km. We do not currently recommend limiting the SAGE III water vapor data utility in the stratosphere by aerosol loading.


2016 ◽  
Author(s):  
Andreas Ostler ◽  
Ralf Sussmann ◽  
Prabir K. Patra ◽  
Sander Houweling ◽  
Marko De Bruine ◽  
...  

Abstract. The distribution of methane (CH4) in the stratosphere can be a major driver of spatial variability in the dry-air column-averaged CH4 mixing ratio (XCH4), which is being measured increasingly for the assessment of CH4 surface emissions. Chemistry-transport models (CTMs) therefore need to simulate the tropospheric and stratospheric fractional columns of XCH4 accurately for estimating surface emissions from XCH4. Simulations from three CTMs are tested against XCH4 observations from the Total Carbon Column Network (TCCON). We analyze how the model-TCCON agreement in XCH4 depends on the model representation of stratospheric CH4 distributions. Model equivalents of TCCON XCH4 are computed with stratospheric CH4 fields from both the model simulations and from satellite-based CH4 distributions from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) and MIPAS CH4 fields adjusted to ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. In comparison to simulated model fields we find an improved model-TCCON XCH4 agreement for all models with MIPAS-based stratospheric CH4 fields. For the Atmospheric Chemistry Transport Model (ACTM) the average XCH4 bias is significantly reduced from 38.1 ppb to 13.7 ppb, whereas small improvements are found for the models TM5 (Transport Model, version 5; from 8.7 ppb to 4.3 ppb), and LMDz (Laboratoire de Météorologie Dynamique model with Zooming capability; from 6.8 ppb to 4.3 ppb), respectively. MIPAS stratospheric CH4 fields adjusted to ACE-FTS reduce the average XCH4 bias for ACTM (3.3 ppb), but increase the average XCH4 bias for TM5 (10.8 ppb) and LMDz (20.0 ppb). These findings imply that the range of satellite-based stratospheric CH4 is insufficient to resolve a possible stratospheric contribution to differences in total column CH4 between TCCON and TM5 or LMDz. Applying transport diagnostics to the models indicates that model-to-model differences in the simulation of stratospheric transport, notably the age of stratospheric air, can largely explain the inter-model spread in stratospheric CH4 and, hence, its contribution to XCH4. This implies that there is a need to better understand the impact of individual model transport components (e.g., physical parameterization, meteorological data sets, model horizontal/vertical resolution) on modeled stratospheric CH4.


2007 ◽  
Vol 7 (13) ◽  
pp. 3639-3662 ◽  
Author(s):  
T. Steck ◽  
T. von Clarmann ◽  
H. Fischer ◽  
B. Funke ◽  
N. Glatthor ◽  
...  

Abstract. This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia) science-oriented processor from high spectral resolution data (until March 2004) measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III). Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are generally within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision degrades to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.


2021 ◽  
Author(s):  
Lukas Krasauskas ◽  
Jörn Ungermann ◽  
Peter Preusse ◽  
Felix Friedl-Vallon ◽  
Andreas Zahn ◽  
...  

<p>We present measurements of ozone, water vapour and nitric acid in the upper troposphere/lower stratosphere (UTLS) over North Atlantic and Europe. The measurements were acquired with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) during the Wave Driven Isentropic Exchange (WISE) campaign in October 2017. GLORIA is an airborne limb imager capable of acquiring both 2-D data sets (curtains along the flight path) and, when the carrier aircraft is flying around the observed air mass, spatially highly resolved 3-D tomographic data. We show a case study of a Rossby wave (RW) breaking event observed during two subsequent flights two days apart. RW breaking is known to steepen tracer gradients and facilitate stratosphere-troposphere exchange (STE). Our measurements reveal complex spatial structures in stratospheric tracers (ozone and nitric acid) with multiple vertically stacked filaments. Backward trajectory analysis is used to demonstrate that these features are related to several previous Rossby wave breaking events and that the small-scale structure of the UTLS in the Rossby wave breaking region, which is otherwise very hard to observe, can be understood as stirring and mixing of air masses of tropospheric and stratospheric origin. It is also shown that a strong nitric acid enhancement observed just above the tropopause is likely a result of NO<sub>x</sub> production by lightning activity. The measurements showed signatures of enhanced mixing between stratospheric and tropospheric air near the polar jet with some transport of water vapour into the stratosphere. Some of the air masses seen in 3-D data were encountered again two days later, stretched to very thin filament (horizontal thickness down to 30 km at some altitudes) rich in stratospheric tracers. This repeated measurement allowed us to directly observe and analyse the progress of mixing processes in a thin filament over two days. Our results provide direct insight into small-scale dynamics of the UTLS in the Rossby wave breaking region, witch is of great importance to understanding STE and poleward transport in the UTLS.</p>


Sign in / Sign up

Export Citation Format

Share Document