scholarly journals On interpreting studies of tracer transport by deep cumulus convection and its effects on atmospheric chemistry

2008 ◽  
Vol 8 (20) ◽  
pp. 6037-6050 ◽  
Author(s):  
M. G. Lawrence ◽  
M. Salzmann

Abstract. Global chemistry-transport models (CTMs) and chemistry-GCMs (CGCMs) generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.

2008 ◽  
Vol 8 (3) ◽  
pp. 12163-12195 ◽  
Author(s):  
M. G. Lawrence ◽  
M. Salzmann

Abstract. Global chemistry-transport models (CTMs) and chemistry-GCMs (CGCMs) generally simulate vertical tracer transport by deep convection separately from the advective transport by the mean winds, even though a component of the mean transport, for instance in the Hadley and Walker cells, occurs in deep convective updrafts. This split treatment of vertical transport has various implications for CTM simulations. In particular, it has led to a misinterpretation of several sensitivity simulations in previous studies in which the parameterized convective transport of one or more tracers is neglected. We describe this issue in terms of simulated fluxes and fractions of these fluxes representing various physical and non-physical processes. We then show that there is a significant overlap between the convective and large-scale mean advective vertical air mass fluxes in the CTM MATCH, and discuss the implications which this has for interpreting previous and future sensitivity simulations, as well as briefly noting other related implications such as numerical diffusion.


2010 ◽  
Vol 10 (4) ◽  
pp. 1931-1951 ◽  
Author(s):  
H. Tost ◽  
M. G. Lawrence ◽  
C. Brühl ◽  
P. Jöckel ◽  
◽  
...  

Abstract. Moist convection in global modelling contributes significantly to the transport of energy, momentum, water and trace gases and aerosols within the troposphere. Since convective clouds are on a scale too small to be resolved in a global model their effects have to be parameterised. However, the whole process of moist convection and especially its parameterisations are associated with uncertainties. In contrast to previous studies on the impact of convection on trace gases, which had commonly neglected the convective transport for some or all compounds, we investigate this issue by examining simulations with five different convection schemes. This permits an uncertainty analysis due to the process formulation, without the inconsistencies inherent in entirely neglecting deep convection or convective tracer transport for one or more tracers. Both the simulated mass fluxes and tracer distributions are analysed. Investigating the distributions of compounds with different characteristics, e.g., lifetime, chemical reactivity, solubility and source distributions, some differences can be attributed directly to the transport of these compounds, whereas others are more related to indirect effects, such as the transport of precursors, chemical reactivity in certain regions, and sink processes. The model simulation data are compared with the average regional profiles of several measurement campaigns, and in detail with two campaigns in fall and winter 2005 in Suriname and Australia, respectively. The shorter-lived a compound is, the larger the differences and consequently the uncertainty due to the convection parameterisation are, as long as it is not completely controlled by local production that is independent of convection and its impacts (e.g. water vapour changes). Whereas for long-lived compounds like CO or O3 the mean differences between the simulations are less than 25%), differences for short-lived compounds reach up to ±100% with different convection schemes. A rating of an overall "best" performing scheme is difficult, since the optimal performance depends on the region and compound.


2011 ◽  
Vol 11 (12) ◽  
pp. 5783-5803 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Dhomse ◽  
B. M. Monge-Sanz ◽  
X. Yang ◽  
...  

Abstract. We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (re)analyses (ERA-40, ECMWF operational and ECMWF Interim) to diagnose the updraft mass flux, convective precipitation and cloud top height. The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim) below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL), which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed. The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation. We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution gives stronger vertical tracer transport, however, it does not make a large change to the diagnosed convective updraft mass flux (i.e., the model results using the convection scheme fail to capture the strong convection transport up to 100 hPa as seen in the archived convective mass fluxes). Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a large improvement compared to the archived mass fluxes. Including a radon tracer in the model confirms the importance of convection for reproducing observed midlatitude profiles. The model run using archived mass fluxes transports significantly more radon to the upper troposphere but the available data does not strongly discriminate between the different model versions.


2019 ◽  
Vol 12 (5) ◽  
pp. 1991-2008 ◽  
Author(s):  
Sabine Brinkop ◽  
Patrick Jöckel

Abstract. We have extended ATTILA (Atmospheric Tracer Transport in a LAgrangian model), a Lagrangian tracer transport scheme, which is online coupled to the global ECHAM/MESSy Atmospheric Chemistry (EMAC) model, with a combination of newly developed and modified physical routines and new diagnostic and infrastructure submodels. The new physical routines comprise a parameterisation for Lagrangian convection, a formulation of diabatic vertical velocity, and the new grid-point submodel LGTMIX to calculate the mixing of compounds in Lagrangian representation. The new infrastructure routines simplify the transformation between grid-point (GP) and Lagrangian (LG) space in a parallel computing environment. The new submodel LGVFLUX is a useful diagnostic tool to calculate online vertical mass fluxes through horizontal surfaces. The submodel DRADON was extended to account for emissions and changes of 222Rn on Lagrangian parcels. To evaluate the new physical routines, two simulations in free-running mode with prescribed sea surface temperatures were performed with EMAC–ATTILA in T42L47MA resolution from 1950 to 2010. The results show an improvement of the tracer transport into and within the stratosphere when the diabatic vertical velocity is used for vertical advection in ATTILA instead of the standard kinematic vertical velocity. In particular, the age-of-air distribution is more in accordance with observations. The global tropospheric distribution of 222Rn, however, is simulated in agreement with available observations and with the results from EMAC in grid space for both Lagrangian systems. Additional sensitivity studies reveal an effect of inter-parcel mixing on the age of air in the tropopause region and the stratosphere, but there is no significant effect for the troposphere.


2010 ◽  
Vol 10 (10) ◽  
pp. 22953-22991 ◽  
Author(s):  
W. Feng ◽  
M. P. Chipperfield ◽  
S. Dhomse ◽  
B. M. Monge-Sanz ◽  
X. Yang ◽  
...  

Abstract. We investigate the performance of cloud convection and tracer transport in a global off-line 3-D chemical transport model. Various model simulations are performed using different meteorological (re)analyses (ERA-40, ECMWF operational and ECMWF Interim) to diagnose the updraft mass flux, convective precipitation and cloud top height. The diagnosed upward mass flux distribution from TOMCAT agrees quite well with the ECMWF reanalysis data (ERA-40 and ERA-Interim) below 200 hPa. Inclusion of midlevel convection improves the agreement at mid-high latitudes. However, the reanalyses show strong convective transport up to 100 hPa, well into the tropical tropopause layer (TTL), which is not captured by TOMCAT. Similarly, the model captures the spatial and seasonal variation of convective cloud top height although the mean modelled value is about 2 km lower than observed. The ERA-Interim reanalyses have smaller archived upward convective mass fluxes than ERA-40, and smaller convective precipitation, which is in better agreement with satellite-based data. TOMCAT captures these relative differences when diagnosing convection from the large-scale fields. The model also shows differences in diagnosed convection with the version of the operational analyses used, which cautions against using results of the model from one specific time period as a general evaluation. We have tested the effect of resolution on the diagnosed modelled convection with simulations ranging from 5.6° × 5.6° to 1° × 1°. Overall, in the off-line model, the higher model resolution does not make a large change to the diagnosed convective tracer transport. Similarly, the resolution of the forcing winds in the higher resolution CTM does not make a large improvement compared to the archived mass fluxes. Including a radon tracer in the model confirms the importance of convection for reproducing observed midlatitude profiles. The model run using archived mass fluxes transports significantly more radon to the upper troposphere but the available data does not strongly discriminate between the different model versions.


2019 ◽  
Author(s):  
Sabine Brinkop ◽  
Patrick Jöckel

Abstract. We have extended ATTILA (Atmospheric Tracer Transport in a LAgrangian model), a Lagrangian tracer transport scheme, which is on-line coupled to the global ECHAM/MESSy Atmospheric Chemistry (EMAC) Climate model, with a combination of newly developed and modified physical routines, and new diagnostic and infrastructure submodels. The new physical routines comprise a parametrisation for Lagrangian convection, a formulation of diabatic vertical velocity, and the new grid-point submodel LGTMIX to calculate the mixing of compounds in Lagrangian representation. The new infrastructure routines simplify the transformation between grid-point (GP) and Lagrangian (LG) space in a parallel computing environment. The new submodel LGVFLUX is a useful diagnostic tool to calculate on-line vertical mass-fluxes through horizontal surfaces. The submodel DRADON was extended to account for emissions and changes of 222Radon on Lagrangian parcels. To evaluate the new physical routines, two simulations in free-running mode with prescribed sea surface temperatures were performed with EMAC-ATTILA in T42L47MA resolution from 1950 to 2010. The results show an improvement of the tracer transport into and within the stratosphere, when the diabatic vertical velocity is used for vertical advection in ATTILA instead of the standard kinematic vertical velocity. Especially the age-of-air distribution is more in accordance with observations. The global tropospheric distribution of 222Radon, however, is simulated in agreement with available observations and with the results from EMAC in grid-space for both Lagrangian systems. Additional sensitivity studies reveal an effect of the inter-parcel mixing on the age-of-air in the tropopause region and the stratosphere, but no significant effect for the troposphere.


2009 ◽  
Vol 9 (3) ◽  
pp. 11005-11050
Author(s):  
H. Tost ◽  
M. G. Lawrence ◽  
P. Jöckel

Abstract. Moist convection in global modelling contributes significantly to the transport of energy, momentum, water and trace gases within the troposphere. Since convective clouds are on a scale too small to be resolved in a global model their effects have to be parameterised. However, the whole process of moist convection and especially its parameterisation are associated with uncertainties. In contrast to previous studies we address the impact of convection on trace species by examining simulations with five different convection schemes, rather than neglecting the convective transport for some or all compounds. This permits an uncertainty analysis due to the process formulation, without the inconsistencies inherent in entirely neglecting deep convection or convective tracer transport for one or more tracers. Both the simulated mass fluxes and tracer distributions are analysed. Investigating the distributions of compounds with different characteristics, e.g., lifetime, chemical reactivity, solubility and source distributions, some differences can be attributed directly to the transport of these compounds, whereas others are more related to indirect effects, such as the transport of precursors, chemical reactivity in certain regions, and sink processes. The shorter-lived a compound is, the larger the differences and consequently the uncertainty due to the convection parameterisation, i.e., reaching up to ±100% for short-lived compounds, whereas for long-lived compounds like CO or O3 the mean differences between the simulations are less than 25%.


2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


2014 ◽  
Vol 14 (2) ◽  
pp. 609-627 ◽  
Author(s):  
C. A. Klich ◽  
H. E. Fuelberg

Abstract. We use the Weather Research and Forecasting with Chemistry (WRF-Chem) online chemical transport model to simulate a middle latitude cyclone in East Asia at three different horizontal resolutions (45, 15, and 5 km grid spacing). The cyclone contains a typical warm conveyor belt (WCB) with an embedded squall line that passes through an area having large surface concentrations (> 400 ppbv) of carbon monoxide (CO). Model output from WRF-Chem is used to compare differences between the large-scale CO vertical transport by the WCB (the 45 km simulation) with the smaller-scale transport due to its convection (the 5 km simulation). Forward trajectories are calculated from WRF-Chem output using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. At 45 km grid spacing, the WCB exhibits gradual ascent, lofting surface CO to 6–7 km. Upon reaching the warm front, the WCB and associated CO ascend more rapidly and later turn eastward over the Pacific Ocean. Convective transport at 5 km resolution with explicitly resolved convection occurs much more rapidly, with surface CO lofted to altitudes greater than 10 km in 1 h or less. We also compute CO vertical mass fluxes over specified areas and times to compare differences in transport due to the different grid spacings. Upward CO flux exceeds 110 000 t h−1 in the domain with explicit convection when the squall line is at peak intensity, while fluxes from the two coarser resolutions are an order of magnitude smaller. Specific areas of interest within the 5 km domain are defined to compare the magnitude of convective transport to that within the entire 5 km region. Although convection encompasses only a small portion of the 5 km domain, it is responsible for ~40% of the upward CO transport. We also examine the vertical transport due to a short wave trough and its associated area of convection, not related to the cyclone, that lofts CO to the upper troposphere. Results indicate that fine-scale resolution with explicitly resolved convection is important when assessing the vertical transport of surface emissions in areas of deep convection.


2008 ◽  
Vol 8 (10) ◽  
pp. 2741-2757 ◽  
Author(s):  
M. Salzmann ◽  
M. G. Lawrence ◽  
V. T. J. Phillips ◽  
L. J. Donner

Abstract. A cloud system resolving model including photo-chemistry (CSRMC) has been developed based on a prototype version of the Weather Research and Forecasting (WRF) model and is used to study influences of deep convection on chemistry in the TOGA COARE/CEPEX region. Lateral boundary conditions for trace gases are prescribed from global chemistry-transport simulations, and the vertical advection of trace gases by large scale dynamics, which is not reproduced in a limited area cloud system resolving model, is taken into account. The influences of deep convective transport and of lightning on NOx, O3, and HOx(=HO2+OH), in the vicinity of the deep convective systems are investigated in a 7-day 3-D 248×248 km2 horizontal domain simulation and several 2-D sensitivity runs with a 500 km horizontal domain. Mid-tropospheric entrainment is more important on average for the upward transport of O3 in the 3-D run than in the 2-D runs, but at the same time undiluted O3-poor air from the marine boundary layer reaches the upper troposphere more frequently in the 3-D run than in the 2-D runs, indicating the presence of undiluted convective cores. In all runs, in situ lightning is found to have only minor impacts on the local O3 budget. Near zero O3 volume mixing ratios due to the reaction with lightning-produced NO are only simulated in a 2-D sensitivity run with an extremely high number of NO molecules per flash, which is outside the range of current estimates. The fraction of NOx chemically lost within the domain varies between 20 and 24% in the 2-D runs, but is negligible in the 3-D run, in agreement with a lower average NOx concentration in the 3-D run despite a greater number of flashes. Stratosphere to troposphere transport of O3 is simulated to occur episodically in thin filaments in the 2-D runs, but on average net upward transport of O3 from below ~16 km is simulated in association with mean large scale ascent in the region. Ozone profiles in the TOGA COARE/CEPEX region are suggested to be strongly influenced by the intra-seasonal (Madden-Julian) oscillation.


Sign in / Sign up

Export Citation Format

Share Document