scholarly journals Influence of non-ideality on condensation to aerosol

2009 ◽  
Vol 9 (4) ◽  
pp. 1325-1337 ◽  
Author(s):  
S. Compernolle ◽  
K. Ceulemans ◽  
J.-F. Müller

Abstract. Secondary organic aerosol (SOA) is a complex mixture of water and organic molecules. Its composition is determined by the presence of semi-volatile or non-volatile compounds, their saturation vapor pressure and activity coefficient. The activity coefficient is a non-ideality effect and is a complex function of SOA composition. In a previous publication, the detailed chemical mechanism (DCM) for α-pinene oxidation and subsequent aerosol formation BOREAM was presented. In this work, we investigate with this DCM the impact of non-ideality by simulating smog chamber experiments for α-pinene degradation and aerosol formation and taking the activity coefficient into account of all molecules in the aerosol phase. Several versions of the UNIFAC method are tested for this purpose, and missing parameters for e.g. hydroperoxides and nitrates are inferred from fittings to activity coefficient data generated using the SPARC model. Alternative approaches to deal with these missing parameters are also tested, as well as an activity coefficient calculation method based on Hansen solubility parameters (HSP). It turns out that for most experiments, non-ideality has only a limited impact on the interaction between the organic molecules, and therefore on SOA yields and composition, when water uptake is ignored. The reason is that often, the activity coefficient is on average close to 1 and, specifically for high-VOC experiments, partitioning is not very sensitive on the activity coefficient because the equilibrium is shifted strongly towards condensation. Still, for ozonolysis experiments with low amounts of volatile organic carbon (low-VOC), the UNIFAC parameterization of Raatikainen et al. leads to significantly higher SOA yields (by up to a factor 1.6) compared to the ideal case and to other parameterizations. Water uptake is model dependent, in the order: ideal > UNIFAC-Raatikainen > UNIFAC-Peng > UNIFAC-Hansen ≈ UNIFAC-Magnussen ≈ UNIFAC-Ming. In the absence of salt dissolution, phase splitting from pure SOA is unlikely.

2008 ◽  
Vol 8 (5) ◽  
pp. 17061-17093
Author(s):  
S. Compernolle ◽  
K. Ceulemans ◽  
J.-F. Müller

Abstract. Secondary organic aerosol (SOA) is a complex mixture of water and organic molecules. Its composition is determined by the presence of semi-volatile or non-volatile compounds, their vapor pressure and activity coefficient. The activity coefficient is a non-ideality effect and is a complex function of SOA composition. In a previous publication, the detailed chemical mechanism (DCM) for α-pinene oxidation and subsequent aerosol formation BOREAM was presented. In this work, we investigate with this DCM the impact of non-ideality by simulating smog chamber experiments for α-pinene degradation and aerosol formation. Several versions of the UNIFAC method are tested for this purpose, and missing parameters for e.g. hydroperoxides and nitrates are inferred from fittings to activity coefficient data generated using the SPARC model. It turns out that for most experiments, non-ideality has only a limited impact on the interaction between the organic molecules, and therefore on SOA yields and composition, when water uptake is ignored. Still, for ozonolysis experiments with low amounts of volatile organic carbon (low-VOC), the UNIFAC parameterization of Raatikainen et al. leads to significantly higher SOA yields (by up to a factor 1.6) compared to the ideal case and to other parameterizations. Water uptake is model dependent, in the order: ideal>UNIFAC-Raatikainen>UNIFAC-Peng>UNIFAC-Hansen≈UNIFAC-Magnussen≈UNIFAC-Ming. In the absence of salt dissolution, phase splitting from pure SOA is unlikely.


2021 ◽  
Vol 14 (8) ◽  
pp. 5239-5268
Author(s):  
James Weber ◽  
Scott Archer-Nicholls ◽  
Nathan Luke Abraham ◽  
Youngsub M. Shin ◽  
Thomas J. Bannan ◽  
...  

Abstract. We present the first incorporation of the Common Representative Intermediates version 2.2 tropospheric chemistry mechanism, CRI v2.2, combined with stratospheric chemistry, into the global chemistry–climate United Kingdom Chemistry and Aerosols (UKCA) model to give the CRI-Strat 2 mechanism. A rigorous comparison of CRI-Strat 2 with the earlier version, CRI-Strat, is performed in UKCA in addition to an evaluation of three mechanisms, CRI-Strat 2, CRI-Strat and the standard UKCA chemical mechanism, StratTrop v1.0, against a wide array of surface and airborne chemical data. CRI-Strat 2 comprises a state-of-the-art isoprene scheme, optimized against the Master Chemical Mechanism v3.3.1, which includes isoprene peroxy radical isomerization, HOx recycling through the addition of photolabile hydroperoxy aldehydes (HPALDs), and isoprene epoxy diol (IEPOX) formation. CRI-Strat 2 also features updates to several rate constants for the inorganic chemistry, including the reactions of inorganic nitrogen and O(1D). The update to the isoprene chemistry in CRI-Strat 2 increases OH over the lowest 500 m in tropical forested regions by 30 %–50 % relative to CRI-Strat, leading to an improvement in model–observation comparisons for surface OH and isoprene relative to CRI-Strat and StratTrop. Enhanced oxidants also cause a 25 % reduction in isoprene burden and an increase in oxidation fluxes of isoprene and other biogenic volatile organic compounds (BVOCs) at low altitudes with likely impacts on subsequent aerosol formation, atmospheric lifetime, and climate. By contrast, updates to the rate constants of O(1D) with its main reactants relative to CRI-Strat reduces OH in much of the free troposphere, producing a 2 % increase in the methane lifetime, and increases the tropospheric ozone burden by 8 %, primarily from reduced loss via O(1D)+H2O. The changes to inorganic nitrogen reaction rate constants increase the NOx burden by 4 % and shift the distribution of nitrated species closer to that simulated by StratTrop. CRI-Strat 2 is suitable for multi-decadal model integrations and the improved representation of isoprene chemistry provides an opportunity to explore the consequences of HOx recycling in the United Kingdom Earth System Model (UKESM1). This new mechanism will enable a re-evaluation of the impact of BVOCs on the chemical composition of the atmosphere and further probe the feedback between the biosphere and the climate.


2015 ◽  
Vol 15 (6) ◽  
pp. 8113-8149 ◽  
Author(s):  
A. Hodzic ◽  
S. Madronich ◽  
P. S. Kasibhatla ◽  
G. Tyndall ◽  
B. Aumont ◽  
...  

Abstract. This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOA). Typically only photolysis of smaller organic molecules (e.g. formaldehyde) for which explicit data exist is included in chemistry-climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low- and high-NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after four days of chemical aging under those conditions (equivalent to eight days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields i.e ~15% (low-NOx) to ~45% (high-NOx) for α-pinene, ~15% for toluene, ~25% for C12-alkane, and ~10% for C16-alkane. The small effect on low volatility n-alkanes such as C16-alkane is due to the rapid partitioning of early-generation products to the particle phase where they are assumed to be protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass seems increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas-phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an estimated SOA photolysis rate of JSOA=4 x 10-4JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40–60% for most species after ten days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle, and thus the amount of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales (less than 7 days) that are comparable to wet deposition.


2015 ◽  
Vol 15 (16) ◽  
pp. 9253-9269 ◽  
Author(s):  
A. Hodzic ◽  
S. Madronich ◽  
P. S. Kasibhatla ◽  
G. Tyndall ◽  
B. Aumont ◽  
...  

Abstract. This study presents the first modeling estimates of the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Typically only photolysis of smaller organic molecules (e.g., formaldehyde) for which explicit data exist is included in chemistry–climate models. Here, we specifically examine the photolysis of larger molecules that actively partition between the gas and particle phases. The chemical mechanism generator GECKO-A is used to explicitly model SOA formation from α-pinene, toluene, and C12 and C16 n-alkane reactions with OH at low and high NOx. Simulations are conducted for typical mid-latitude conditions and a solar zenith angle of 45° (permanent daylight). The results show that after 4 days of chemical aging under those conditions (equivalent to 8 days in the summer mid-latitudes), gas-phase photolysis leads to a moderate decrease in SOA yields, i.e., ~15 % (low NOx) to ~45 % (high NOx) for α-pinene, ~15 % for toluene, ~25 % for C12 n-alkane, and ~10 % for C16 n-alkane. The small effect of gas-phase photolysis on low-volatility n-alkanes such as C16 n-alkane is due to the rapid partitioning of early-generation products to the particle phase, where they are protected from gas-phase photolysis. Minor changes are found in the volatility distribution of organic products and in oxygen to carbon ratios. The decrease in SOA mass is increasingly more important after a day of chemical processing, suggesting that most laboratory experiments are likely too short to quantify the effect of gas-phase photolysis on SOA yields. Our results also suggest that many molecules containing chromophores are preferentially partitioned into the particle phase before they can be photolyzed in the gas phase. Given the growing experimental evidence that these molecules can undergo in-particle photolysis, we performed sensitivity simulations using an empirically estimated SOA photolysis rate of JSOA = 4 × 10−4 JNO2. Modeling results indicate that this photolytic loss rate would decrease SOA mass by 40–60 % for most species after 10 days of equivalent atmospheric aging at mid-latitudes in the summer. It should be noted that in our simulations we do not consider in-particle or aqueous-phase reactions which could modify the chemical composition of the particle and thus the quantity of photolabile species. The atmospheric implications of our results are significant for both the SOA global distribution and lifetime. GEOS-Chem global model results suggest that particle-phase photolytic reactions could be an important loss process for SOA in the atmosphere, removing aerosols from the troposphere on timescales of less than 7 days that are comparable to wet deposition.


2012 ◽  
Vol 12 (12) ◽  
pp. 5343-5366 ◽  
Author(s):  
K. Ceulemans ◽  
S. Compernolle ◽  
J.-F. Müller

Abstract. A new parameter model for α-pinene secondary organic aerosol (SOA) is presented, based on simulations with the detailed model BOREAM (Biogenic hydrocarbon Oxidation and Related Aerosol formation Model). The parameterisation takes into account the influence of temperature, type of oxidant, NOx-regime, photochemical ageing and water uptake, and is suitable for use in global chemistry transport models. BOREAM is validated against recent photooxidation smog chamber experiments, for which it reproduces SOA yields to within a factor of 2 in most cases. In the simple chemical mechanism of the parameter model, oxidation of α-pinene generates peroxy radicals, which, upon reaction with NO or HO2, yield products corresponding to high or low-NOx conditions, respectively. The model parameters – i.e. the temperature-dependent stoichiometric coefficients and partitioning coefficients of 10 semi-volatile products – are obtained from simulations with BOREAM, including a prescribed diurnal cycle for the radiation, oxidant and emission levels, as well as a deposition sink for the particulate and gaseous products. The effects of photooxidative ageing are implicitly included in the parameterisation, since it is based on near-equilibrium SOA concentrations, obtained through simulations of a two-week period. In order to mimic the full BOREAM model results both during SOA build-up and when SOA has reached an equilibrium concentration, the revolatilisation of condensable products due to photochemical processes is taken into account through a fitted pseudo-photolysis reaction of the lumped semi-volatile products. Modelled SOA mass yields are about ten times higher in low-NOx than in high-NOx conditions, with yields of more than 50% in the low-NOx OH-initiated oxidation of α-pinene, considerably more than in previous parameterisations based on smog chamber experiments. Sensitivity calculations indicate that discrepancies between the full model and the parameterisation due to variations in assumed oxidant levels are limited, but that changes in the radiation levels can lead to larger deviations. Photolysis of species in the particulate phase is found to strongly reduce SOA yields in the full model. Simulations of ambient conditions at 17 different sites (using oxidant, radiation and meteorological data from a global chemistry-transport model) show that overall, the parameterisation displays only little bias (2%) compared with the full model, whereas averaged relative deviations amount to about 11%. Water uptake is parameterised using fitted activity coefficients, resulting in a good agreement with the full model.


2021 ◽  
Author(s):  
James Weber ◽  
Scott Archer-Nicholls ◽  
Nathan Luke Abraham ◽  
Youngsub Matthew Shin ◽  
Thomas J. Bannan ◽  
...  

Abstract. We present the first incorporation of the Common Representative Intermediates version 2.2 tropospheric chemistry mechanism, CRI v2.2, combined with stratospheric chemistry, into the global chemistry-climate United Kingdom Chemistry and Aerosols (UKCA) model to give the CRI-Strat 2 mechanism. A rigorous comparison of CRI-Strat 2 with the earlier version, CRI-Strat, is performed in UKCA in addition to an evaluation of three mechanisms, CRI-Strat 2, CRI-Strat and the standard UKCA chemical mechanism, StratTrop vn1.0, against a wide array of surface and airborne chemical data. CRI-Strat 2 comprises a state-of-the-art isoprene scheme, optimised against the MCM v3.3.1, which includes isoprene peroxy radical isomerisation, HOx-recycling through the addition of photolabile hydroperoxy aldehydes (HPALDs) and IEPOX formation. CRI-Strat 2 also features updates to several rate constants for the inorganic chemistry including the reactions of inorganic nitrogen and O(1D). The update to the isoprene chemistry in CRI-Strat 2 increases OH over the lowest 500 m in tropical forested regions by 30–50 %, relative to CRI-Strat, leading to an improvement in model-observation comparisons for surface OH and isoprene relative to CRI-Strat and StratTrop. Enhanced oxidants also cause a 25 % reduction in isoprene burden and an increase in oxidation fluxes of isoprene and other biogenic volatile organic compounds (BVOCs) at low altitudes with likely impacts on subsequent atmospheric lifetime, aerosol formation and climate. By contrast, updates to the rate constants of O(1D) with its main reactants relative to CRI-Strat reduces OH in much of the free troposphere, producing a 2 % increase in the methane lifetime, and increases the tropospheric ozone burden by 8 %, primarily from reduced loss via O(1D) + H2O. The changes to inorganic nitrogen reaction rate constants increase the NOx burden by 4 % and shift the distribution of nitrated species closer to that simulated by StratTrop. CRI-Strat 2 is suitable for multi-decadal model integrations and the improved representation of isoprene chemistry provides an opportunity to explore the consequences of HOx-recycling in the United Kingdom Earth System Model (UKESM1). This new mechanism will enable a re-evaluation of the impact of BVOCs on the chemical composition of the atmosphere and probe further the feedback between the biosphere and the climate.


2011 ◽  
Vol 11 (8) ◽  
pp. 23421-23468
Author(s):  
K. Ceulemans ◽  
S. Compernolle ◽  
J.-F. Müller

Abstract. A new 10-product parameter model for α-pinene secondary organic aerosol (SOA) is presented, based on simulations with the detailed model BOREAM (Biogenic hydrocarbon Oxidation and Related Aerosol formation Model). The parameterisation takes into account the influence of temperature, type of oxidant, NOx-regime, photochemical ageing and water uptake, and is suitable for use in global chemistry transport models. BOREAM is validated against recent photooxidation smog chamber experiments, for which it reproduces SOA yields to within a factor of 2 in most cases. In the simple chemical mechanism of the parameter model, oxidation of α-pinene generates peroxy radicals, which, upon reaction with NO or HO2, yield products corresponding to high or low-NOx conditions, respectively. The model parameters – i.e. the temperature-dependent stoichiometric coefficients and partitioning coefficients of the 10 semi-volatile products – are obtained from simulations with BOREAM, including a prescribed diurnal cycle for the radiation, oxidant and emission levels, as well as a deposition sink for the particulate and gaseous products. The effects of photooxidative ageing are implicitly included in the parameterisation, since it is based on near-equilibrium SOA concentrations, obtained through simulations of a two-week period. Modelled SOA mass yields are about ten times higher in low-NOx than in high-NOx conditions, with yields of about 50 % in the low-NOx OH-initiated oxidation of α-pinene, considerably more than in previous parameterisations based on smog chamber experiments. The parameterisation is only moderately sensitive to the assumed oxidant levels. However, photolysis of species in the particulate phase is found to strongly reduce SOA yields. Water uptake is parameterised using fitted activity coefficients, resulting in a good agreement with the full model.


2018 ◽  
Vol 15 (3) ◽  
pp. 171 ◽  
Author(s):  
Stephen White ◽  
Dennys Angove ◽  
Kangwei Li ◽  
Ian Campbell ◽  
Adrian Element ◽  
...  

Environmental contextChemical mechanisms are an important component of predictive air quality models that are developed using smog chambers. In smog chamber experiments, UV lamps are often used to simulate sunlight, and the choice of lamp can influence the obtained data, leading to differences in model predictions. We investigate the effect of various UV lamps on the prediction accuracy of a key mechanism in atmospheric chemistry. AbstractA new smog chamber was constructed at CSIRO following the decommissioning of the previous facility. The new chamber has updated instrumentation, is 35 % larger, and has been designed for chemical mechanism and aerosol formation studies. To validate its performance, characterisation experiments were conducted to determine wall loss and radical formation under irradiation by UV lamps. Two different types of blacklights commonly used in indoor chambers are used as light sources, and the results using these different lamps are investigated. Gas-phase results were compared against predictions from the latest version of the SAPRC chemical mechanism. The SAPRC mechanism gave accurate results for hydrocarbon reaction and oxidation formation for propene and o-xylene experiments, regardless of the light source used, with variations in ozone concentrations between experiment and modelled results typically less than 10 % over 6-h irradiation. The SAPRC predictions for p-xylene photooxidation showed overprediction in the rate of oxidation, although no major variations were determined in mechanism results for different blacklight sources. Additionally, no significant differences in the yields of aerosol arising from new particle formation were discernible regardless of the light source used under these conditions.


2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.


Sign in / Sign up

Export Citation Format

Share Document