scholarly journals Factors controlling the distribution of ozone in the West African lower troposphere during the AMMA (African Monsoon Multidisciplinary Analysis) wet season campaign

2009 ◽  
Vol 9 (16) ◽  
pp. 6135-6155 ◽  
Author(s):  
M. Saunois ◽  
C. E. Reeves ◽  
C. H. Mari ◽  
J. G. Murphy ◽  
D. J. Stewart ◽  
...  

Abstract. Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.

2009 ◽  
Vol 9 (2) ◽  
pp. 6979-7032
Author(s):  
M. Saunois ◽  
C. E. Reeves ◽  
C. Mari ◽  
J. G. Murphy ◽  
D. J. Stewart ◽  
...  

Abstract. A bi-dimensional latitudinal-vertical meterological model coupled with O3-NOx-VOC chemistry is used to reproduce the distribution of ozone and precursors in the boundary layer over West Africa during the African Monsoon Multidisciplinary Analysis (AMMA) campaign as observed on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft. The model reproduces the increase of ozone mixing ratios in the boundary layer observed between the forested region south of 13° N and the Sahelian area northward. Sensitivity and budget analysis reveals that the intertropical convergence zone is a moderate source of O3 rich-air in the boundary layer due to convective downdrafts. Dry deposition drives the ozone minimum over the vegetated area. The combination of high NOx emissions from soil north of 13° N and northward advection by the monsoon flux of VOC-enriched air masses contributes to the ozone maximum simulated at higher latitudes. Simulated OH exhibit a well marked latitudinal gradient with minimum concentrations over the vegetated region where the reactions with biogenic compounds predominate. The model underestimates the observed OH mixing ratios, however this model discrepancy has slight effect on ozone budget and does not alter the conclusions.


2007 ◽  
Vol 20 (21) ◽  
pp. 5264-5284 ◽  
Author(s):  
Samson M. Hagos ◽  
Kerry H. Cook

Abstract The observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses are used to better understand the physical processes that lead to the jump. Because of the distribution of albedo and surface moisture, a sensible heating maximum is in place over the Sahel region throughout the spring. In early May, this sensible heating drives a shallow meridional circulation and moisture convergence at the latitude of the sensible heating maximum, and this moisture is transported upward into the lower free troposphere where it diverges. During the second half of May, the supply of moisture from the boundary layer exceeds the divergence, resulting in a net supply of moisture and condensational heating into the lower troposphere. The resulting pressure gradient introduces an inertial instability, which abruptly shifts the midtropospheric meridional wind convergence maximum from the coast into the continental interior at the end of May. This in turn introduces a net total moisture convergence, net upward moisture flux and condensation in the upper troposphere, and an enhancement of precipitation in the continental interior through June. Because of the shift of the meridional convergence into the continent, condensation and precipitation along the coast gradually decline. The West African monsoon jump is an example of multiscale interaction in the climate system, in which an intraseasonal-scale event is triggered by the smooth seasonal evolution of SSTs and the solar forcing in the presence of land–sea contrast.


2009 ◽  
Vol 136 (S1) ◽  
pp. 66-76 ◽  
Author(s):  
Kassimou Abdou ◽  
Douglas J. Parker ◽  
Barbara Brooks ◽  
Norbert Kalthoff ◽  
Thierry Lebel

2010 ◽  
Vol 136 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Fabienne Lohou ◽  
Frédérique Saïd ◽  
Marie Lothon ◽  
Pierre Durand ◽  
Dominique Serça

Sign in / Sign up

Export Citation Format

Share Document