scholarly journals Properties of the average distribution of equatorial Kelvin waves investigated with the GROGRAT ray tracer

2009 ◽  
Vol 9 (20) ◽  
pp. 7973-7995 ◽  
Author(s):  
M. Ern ◽  
H.-K. Cho ◽  
P. Preusse ◽  
S. D. Eckermann

Abstract. Kelvin waves excited by tropospheric convection are considered to be one of the main drivers of the stratospheric quasi-biennial oscillation (QBO). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT) in order to study the forcing and vertical propagation of Kelvin waves. Launch distributions for the ray tracer at tropospheric altitudes are deduced from space-time spectra of European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, as well as outgoing longwave radiation (OLR) and rainfall data measured by the Tropical Rainfall Measuring Mission (TRMM) satellite. The resulting stratospheric Kelvin wave spectra are compared to ECMWF operational analyses and temperature measurements of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. Questions addressed are: the relative importance of source variability versus wind modulation, the relative importance of radiative and turbulent damping versus wave breaking, and the minimum altitude where freely propagating waves dominate the spectrum.

2009 ◽  
Vol 9 (3) ◽  
pp. 13039-13091
Author(s):  
M. Ern ◽  
H.-K. Cho ◽  
P. Preusse ◽  
S. D. Eckermann

Abstract. Kelvin waves excited by tropospheric convection are considered to be one of the main drivers of the stratospheric quasi-biennial oscillation (QBO). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT) in order to study the forcing and vertical propagation of Kelvin waves. Launch distributions for the ray tracer at tropospheric altitudes are deduced from space-time spectra of European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, as well as outgoing longwave radiation (OLR) and rainfall data measured by the Tropical Rainfall Measuring Mission (TRMM) satellite. The resulting stratospheric Kelvin wave spectra are compared to ECMWF operational analyses and temperature measurements of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. Questions addressed are: the relative importance of source variability versus wind modulation, the relative importance of radiative and turbulent damping versus wave breaking, and the minimum altitude where freely propagating waves dominate the spectrum.


2017 ◽  
Vol 17 (2) ◽  
pp. 793-806 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin-wave activity are investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool for quantifying tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show the strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient sub-seasonal waves (2 K2), and about half of sub-seasonal variance is explained by eastward-traveling Kelvin waves with periods of 4 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and interannual variability contribute about a third (1 K2) to total resolved zonal variance. Sub-seasonal waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin-wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


2012 ◽  
Vol 69 (7) ◽  
pp. 2107-2111 ◽  
Author(s):  
Paul E. Roundy

Abstract The zonal wavenumber–frequency power spectrum of outgoing longwave radiation in the global tropics suggests that power in convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) is organized into two distinct spectral peaks with a minimum in power in between. This work demonstrates that integration of wavelet power in the wavenumber–frequency domain over geographical regions of moderate trade winds yields a similar pronounced spectral gap between these peaks. In contrast, integration over regions of background low-level westerly wind yields a continuum of power with no gap between the MJO and Kelvin bands. Results further show that signals in tropical convection are redder in frequency in these low-level westerly wind zones, confirming that Kelvin waves tend to propagate more slowly eastward over the warm pool than other parts of the world. Results are consistent with the perspective that portions of disturbances labeled as Kelvin waves and the MJO that are proximate to Kelvin wave dispersion curves exist as a continuum over warm pool regions.


2012 ◽  
Vol 69 (3) ◽  
pp. 908-914 ◽  
Author(s):  
Kyle MacRitchie ◽  
Paul E. Roundy

Abstract Previous works have shown that most of the rainfall embedded within the Madden–Julian oscillation (MJO) occurs in large eastward-moving envelopes of enhanced convection known as super cloud clusters. Many of these superclusters have been identified as convectively coupled Kelvin waves. In this work, a simple composite-averaging technique diagnoses the linear and nonlinear contributions to MJO potential vorticity (PV) structure by convection collocated with Kelvin waves. Results demonstrate that PV is generated coincident with active convection in Kelvin waves, but that this PV remains in the environment after Kelvin wave passage and becomes part of the structure of the MJO. Analysis of the Tropical Rainfall Measuring Mission (TRMM) rainfall suggests that 62% of the total rainfall within the MJO occurs within the active convective phases of the Kelvin waves (88% higher than the rain rate that occurs outside of the Kelvin waves), supporting the hypothesis that diabatic heating in cloud clusters embedded within the Kelvin waves generates this PV.


2012 ◽  
Vol 69 (7) ◽  
pp. 2097-2106 ◽  
Author(s):  
Paul E. Roundy

Abstract The view that convectively coupled Kelvin waves and the Madden–Julian oscillation (MJO) are distinct modes is tested by regressing data from the Climate Forecast System Reanalysis against satellite outgoing longwave radiation data filtered for particular zonal wavenumbers and frequencies by wavelet analysis. Results confirm that nearly dry Kelvin waves have horizontal structures consistent with their equatorial beta-plane shallow-water-theory counterparts, with westerly winds collocated with the lower-tropospheric ridge, while the MJO and signals along Kelvin wave dispersion curves at low shallow-water-model equivalent depths are characterized by geopotential troughs extending westward from the region of lower-tropospheric easterly wind anomalies through the region of lower-tropospheric westerly winds collocated with deep convection. Results show that as equivalent depth decreases from that of the dry waves (concomitant with intensification of the associated convection), the ridge in the westerlies and the trough in the easterlies shift westward. The analysis therefore demonstrates a continuous field of intermediate structures between the two extremes, suggesting that Kelvin waves and the MJO are not dynamically distinct modes. Instead, signals consistent with Kelvin waves become more consistent with the MJO as the associated convection intensifies. This result depends little on zonal scale. Further analysis also shows how activity in synoptic-scale Kelvin waves characterized by particular phase speeds evolves with the planetary-scale MJO.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Chen-Jeih Pan ◽  
Shih-Sian Yang ◽  
Uma Das ◽  
Wei-Sheng Chen

The atmospheric Kelvin wave has been widely studied due to its importance in atmospheric dynamics. Since a long-term climatological study is absent in the literature, we have employed the two-dimensional fast Fourier transform (2D-FFT) method for the 40-year long-term reanalysis of the dataset, ERA-Interim, to investigate the properties of Kelvin waves with wavenumbers 1 (E1) and 2 (E2) at 6–24 days wave periods over the equatorial region of ±10° latitude between a 15 and 45 km altitude during the period 1979–2019. The spatio-temporal variations of the E1 and E2 wave amplitudes were compared to the information of stratospheric quasi-biennial oscillation (QBO), and the wave amplitudes were found to have an inter-QBO cycle variation that was related to sea surface temperature and convections, as well as an intra-QBO cycle variation that was caused by interactions between the waves and stratospheric mean flows. Also, the E1 waves with 6–10 day periods and the E2 waves with 6 days period were observed to penetrate the westerly regime of QBO, which has a thickness less than the vertical wavelengths of those waves, and the waves could further propagate upward to higher altitudes. In a case study of the period 2006–2013, the wave amplitudes showed a good correlation with the Niño 3.4 index, outgoing longwave radiation (OLR), and precipitation during 2006–2013, though this was not the case for the full time series. The present paper is the first report on the 40-year climatology of Kelvin waves, and the morphology of Kelvin waves will help us diagnose the anomalies of wave activity and QBO in the future.


2016 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin wave activity is investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool to quantify tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient high-frequency waves (2 K2) and about half of high-frequency variance is explained by eastward traveling Kelvin waves with periods of 7 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and inter-annual variability contribute about a third (1 K2) to total resolved zonal variance. High-frequency waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


2019 ◽  
Vol 32 (18) ◽  
pp. 5833-5847 ◽  
Author(s):  
S. Abhik ◽  
Harry H. Hendon ◽  
Matthew C. Wheeler

Abstract The seasonal-mean variance of the Madden–Julian oscillation (MJO) in austral summer has recently been shown to be significantly (p < 5%) enhanced during easterly phases of the quasi-biennial oscillation (QBO). The impact is large, with the mean MJO variance increasing by ~50% compared to the QBO westerly phase. In contrast, we show using observed outgoing longwave radiation that seasonal variations for convectively coupled equatorial Kelvin, Rossby, and mixed Rossby–gravity waves are insensitive to the QBO. This insensitivity extends to all high-frequency (2–30-day period) and the non-MJO component of the intraseasonal (30–120-day period) convective variance. However, convectively coupled Kelvin wave variability shows a modest increase (~13%) that is marginally significant (p = 10%) during easterly phases of the QBO in austral autumn, when Kelvin wave activity is seasonally strongest along the equator. The mechanism of impact on the Kelvin wave appears to be similar to what has previously been argued for the MJO during austral summer. However, the more tilted and shallower vertical structure of the Kelvin waves suggests that they cannot tap into the extra destabilization at the tropopause provided by the easterly phase of the QBO as effectively as the MJO. Lack of impact on the convectively coupled Rossby and mixed Rossby–gravity waves is argued to stem from their horizontal structure that results in weaker divergent anomalies along the equator, where the QBO impact is greatest. Our results further emphasize that the MJO in austral summer is uniquely affected by the QBO.


2019 ◽  
Vol 76 (8) ◽  
pp. 2463-2480 ◽  
Author(s):  
Vassili Kitsios ◽  
Terence J. O’Kane ◽  
Nedjeljka Žagar

Abstract The Madden–Julian oscillation (MJO) is presented as a series of interacting Rossby and inertial gravity waves of varying vertical scales and meridional extents. These components are isolated by decomposing reanalysis fields into a set of normal mode functions (NMF), which are orthogonal eigenvectors of the linearized primitive equations on a sphere. The NMFs that demonstrate spatial properties compatible with the MJO are inertial gravity waves of zonal wavenumber k = 1 and the lowest meridional index n = 0, and Rossby waves with (k, n) = (1, 1). For these horizontal scales, there are multiple small vertical-scale baroclinic modes that have temporal properties indicative of the MJO. On the basis of one such eastward-propagating inertial gravity wave (i.e., a Kelvin wave), composite averages of the Japanese 55-year Reanalysis demonstrate an eastward propagation of the velocity potential, and oscillation of outgoing longwave radiation and precipitation fields over the Maritime Continent, with an MJO-appropriate temporal period. A cross-spectral analysis indicates that only the MJO time scale is coherent between this Kelvin wave and the more energetic modes. Four mode clusters are identified: Kelvin waves of correct phase period and direction, Rossby waves of correct phase period, energetic Kelvin waves of larger vertical scales and meridional extents extending into the extratropics, and energetic Rossby waves of spatial scales similar to that of the energetic Kelvin waves. We propose that within this normal mode framework, nonlinear interactions between the aforementioned mode groups are required to produce an energetic MJO propagating eastward with an intraseasonal phase period. By virtue of the selected mode groups, this theory encompasses both multiscale and tropical–extratropical interactions.


2006 ◽  
Vol 24 (5) ◽  
pp. 1355-1366 ◽  
Author(s):  
M. Venkat Ratnam ◽  
T. Tsuda ◽  
T. Kozu ◽  
S. Mori

Abstract. The vertical and temporal variations of Kelvin waves and the associated effects on the tropical tropopause were studied using long-term (from May 2001 to October 2005) CHAMP/GPS (CHAllenging Mini satellite Payload/Global Positioning System) radio occultation (RO) measurements. The periods of these waves were found to be varying in between 10 and 15 days, with vertical wavelengths 5–8 km. These variations clearly show eastward phase propagation in the time-longitude section and eastward phase tilts with height in altitude-longitude, displaying the characteristics of Kelvin waves. The peak variance in the temperature is found over the Indian Ocean and into the western Pacific within the broad region of the equator. Kelvin wave amplitudes were found significantly enhanced in the eastward shear of the quasi-biennial oscillation (QBO) and are confined in and around the tropopause during westward phase of QBO, where it extends between 17 and 25 km during the eastward phase of QBO and is damped away above, consistent with earlier reported results. The amplitudes are increasing during the months of Northern Hemisphere winter and sometimes they are highly sporadic in nature. Seasonal and inter-annual variations in the Kelvin wave amplitudes near the tropical tropopause coincide exactly with the tropopause height and temperature, with a sharp tropopause during maximum Kelvin wave activity. A clear annual oscillation, along with a month-to-month coincidence is evident most of the time in both the tropopause height and Kelvin wave activity, with maximum and minimum Kelvin wave amplitudes during the Northern Hemisphere winter and summer, respectively. In addition, a signature of quasi-biennial oscillation (QBO) in the tropopause structure is also seen in long-term tropopause variations, although the amplitudes are less when compared to the annual oscillation. In the westward phase of QBO (during strong Kelvin wave activity) at 20km (in 2001–2002 winter and 2003–2004 winter), the tropopause height was slightly larger with a sharp tropopause and low temperature. The process behind these observed features has been discussed.


Sign in / Sign up

Export Citation Format

Share Document