scholarly journals The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing

2010 ◽  
Vol 10 (2) ◽  
pp. 2711-2729 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.

2010 ◽  
Vol 10 (10) ◽  
pp. 4953-4960 ◽  
Author(s):  
D. L. Yue ◽  
M. Hu ◽  
R. Y. Zhang ◽  
Z. B. Wang ◽  
J. Zheng ◽  
...  

Abstract. Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF) process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1) show a linear correlation with the sulfuric acid concentrations (R2=0.85). Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.


2020 ◽  
Vol 20 (16) ◽  
pp. 10029-10045 ◽  
Author(s):  
James Brean ◽  
David C. S. Beddows ◽  
Zongbo Shi ◽  
Brice Temime-Roussel ◽  
Nicolas Marchand ◽  
...  

Abstract. Atmospheric aerosols contribute some of the greatest uncertainties to estimates of global radiative forcing and have significant effects on human health. New particle formation (NPF) is the process by which new aerosols of sub-2 nm diameter form from gas-phase precursors and contributes significantly to particle numbers in the atmosphere, accounting for approximately 50 % of cloud condensation nuclei globally. Here, we study summertime NPF in urban Barcelona in north-eastern Spain utilising particle counting instruments down to 1.9 nm and a Nitrate Chemical Ionisation Atmospheric Pressure interface Time of Flight Mass Spectrometer (CI-APi-ToF). The rate of formation of new particles is seen to increase linearly with sulfuric acid concentration, although particle formation rates fall short of chamber studies of H2SO4–DMA–H2O while exceeding those of H2SO4–BioOxOrg–H2O nucleation, although a role of highly oxygenated molecules (HOMs) cannot be ruled out. The sulfuric acid dimer : monomer ratio is significantly lower than that seen in experiments involving sulfuric acid and dimethylamine (DMA) in chambers, indicating that stabilisation of sulfuric acid clusters by bases is weaker in this dataset than in chambers, either due to rapid evaporation due to high summertime temperatures or limited pools of stabilising amines. Such a mechanism cannot be verified in these data, as no higher-order H2SO4–amine clusters nor H2SO4–HOM clusters were measured. The high concentrations of HOMs arise from isoprene, alkylbenzene, monoterpene and polycyclic aromatic hydrocarbon (PAH) oxidation, with alkylbenzenes providing greater concentrations of HOMs due to significant local sources. The concentration of these HOMs shows a dependence on temperature. The organic compounds measured primarily fall into the semivolatile organic compound (SVOC) volatility class arising from alkylbenzene and isoprene oxidation. Low-volatility organic compounds (LVOCs) largely arise from oxidation of alkylbenzenes, PAHs and monoterpenes, whereas extremely low-volatility organic compounds (ELVOCs) arise from primarily PAH and monoterpene oxidation. New particle formation without growth past 10 nm is also observed, and on these days oxygenated organic concentrations are lower than on days with growth by a factor of 1.6, and thus high concentrations of low-volatility oxygenated organics which primarily derive from traffic-emitted volatile organic compounds (VOCs) appear to be a necessary condition for the growth of newly formed particles in Barcelona. These results are consistent with prior observations of new particle formation from sulfuric acid–amine reactions in both chambers and the real atmosphere and are likely representative of the urban background of many European Mediterranean cities. A role for HOMs in the nucleation process cannot be confirmed or ruled out, and there is strong circumstantial evidence of the participation of HOMs across multiple volatility classes in particle growth.


2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Chao Yan ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
Lubna Dada ◽  
Dongsen Yang ◽  
...  

2014 ◽  
Vol 14 (8) ◽  
pp. 3865-3881 ◽  
Author(s):  
M. I. García ◽  
S. Rodríguez ◽  
Y. González ◽  
R. D. García

Abstract. A climatology of new particle formation (NPF) events at high altitude in the subtropical North Atlantic is presented. A 4-year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO2, NOx, and O3), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmosphere Watch (GAW) observatory (2373 m above sea level; Tenerife, Canary Islands) was analysed. NPF is associated with the transport of gaseous precursors from the boundary layer by orographic buoyant upward flows that perturb the low free troposphere during daytime. On average, 30% of the days contained an NPF event. Mean values of the formation and growth rates during the study period were 0.46 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May–August), when these events account for 50–60% of the days per month. Monthly mean values of the formation and growth rates exhibit higher values in this season, 0.49–0.92 cm−3 s−1 and 0.48–0.58 nm h−1, respectively. During NPF events, SO2, UV radiation and upslope winds showed higher values than during non-events. The overall data set indicates that SO2 plays a key role as precursor, although other species seem to contribute during some periods. Condensation of sulfuric acid vapour accounts for most of the measured particle growth during most of the year (~70%), except for some periods. In May, the highest mean growth rates (~0.6 nm h−1) and the lowest contribution of sulfuric acid (~13%) were measured, suggesting a significant involvement of other condensing vapours. The SO2 availability seems also to be the most influencing parameter in the year-to-year variability in the frequency of NPF events. The condensation sink showed similar features to other mountain sites, showing high values during NPF events. Summertime observations, when Izaña is within the Saharan Air Layer, suggest that dust particles may play a significant role acting as coagulation sink of freshly formed nucleation particles. The contribution of dust particles to the condensation sink of sulfuric acid vapours seems to be modest (~8% as average). Finally, we identified a set of NPF events in which two nucleation modes, which may evolve at different rates, occur simultaneously and for which further investigations are necessary.


2008 ◽  
Vol 8 (10) ◽  
pp. 2657-2665 ◽  
Author(s):  
A. Laaksonen ◽  
M. Kulmala ◽  
C. D. O'Dowd ◽  
J. Joutsensaari ◽  
P. Vaattovaara ◽  
...  

Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that are likely to be mono- and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10–50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3–10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.


2006 ◽  
Vol 6 (2) ◽  
pp. 505-523 ◽  
Author(s):  
S. Pechtl ◽  
E. R. Lovejoy ◽  
J. B. Burkholder ◽  
R. von Glasow

Abstract. We studied the possible role of iodine oxides in atmospheric new particle formation with the one-dimensional marine boundary layer model MISTRA, which includes chemistry in the gas and aerosol phase as well as aerosol microphysics. The chemical reaction set focuses on halogen (Cl-Br-I) chemistry. We included a two-step nucleation parameterization, where in the first step, the "real" nucleation process is parameterized, i.e., the formation of cluster-sized nuclei via homogeneous condensation of gases. We considered both ternary sulfuric acid-ammonia-water nucleation and homomolecular homogeneous OIO nucleation. For the latter, we derived a parameterization based on combined laboratory-model studies. The second step of the nucleation parameterization treats the "apparent" nucleation rate, i.e., the growth of clusters into the model's lowest size bin by condensable vapors such as OIO. We compared different scenarios for a clean marine versus a polluted continental background atmosphere. In every scenario, we assumed the air to move, independent of its origin, first over a coastal region (where it is exposed to surface fluxes of different reactive iodine precursors) and later over the open ocean. According to these sensitivity studies, in the clean marine background atmosphere OIO can be responsible for both homogeneous nuclei formation and the subsequent growth of the clusters to detectable sizes. In contrast to this, in the continental case with its higher levels of pollutants, gas phase OIO mixing ratios, and hence related nucleation rates, are significantly lower. Compared to ternary H2SO4-NH3-H2O nucleation, homogeneous OIO nucleation can be neglected for new particle formation in this case, but OIO can contribute to early particle growth, i.e., to apparent nucleation rates. In general, we found OIO to be more important for the growth of newly formed particles than for the formation of new nuclei. According to our studies, observations of particle "bursts" can only be explained by hot spot-like, not by homogeneously distributed emissions.


2005 ◽  
Vol 5 (5) ◽  
pp. 9907-9952 ◽  
Author(s):  
S. Pechtl ◽  
E. R. Lovejoy ◽  
J. B. Burkholder ◽  
R. von Glasow

Abstract. We studied the possible role of iodine oxides in atmospheric new particle formation with the one-dimensional marine boundary layer model MISTRA, which includes chemistry in the gas and aerosol phase as well as aerosol microphysics. The chemical reaction set focuses on halogen (Cl-Br-I) chemistry. We included a two-step nucleation parameterization, where in the first step, the ''real'' nucleation process is parameterized, i.e., the formation of cluster-sized nuclei via homogeneous condensation of gases. We considered both ternary sulfuric acid-ammonia-water nucleation and homomolecular homogeneous OIO nucleation. For the latter, we derived a parameterization based on combined laboratory-model studies. The second step of the nucleation parameterization treats the ''apparent'' nucleation rate, i.e., the growth of clusters into the model's lowest size bin by condensable vapors such as OIO. We compared different scenarios for a clean marine versus a polluted continental background atmosphere. In every scenario, we assumed the air to move, independent of its origin, first over a coastal region (where it is exposed to surface fluxes of different reactive iodine precursors) and later over the open ocean. According to these sensitivity studies, in the clean marine background atmosphere OIO can be responsible for both homogeneous nuclei formation and the subsequent growth of the clusters to detectable sizes. In contrast to this, in the continental case with its higher levels of pollutants, gas phase OIO mixing ratios, and hence related nucleation rates, are significantly lower. Compared to ternary H2SO4-NH3-H2O nucleation, homogeneous OIO nucleation can be neglected for new particle formation in this case, but OIO can contribute to early particle growth, i.e., to apparent nucleation rates. In general, we found OIO to be more important for the growth of newly formed particles than for the formation of new nuclei itself. According to our studies, observations of particle ''bursts'' can only be explained by hot spot-like, not by homogeneously distributed emissions.


2008 ◽  
Vol 8 (2) ◽  
pp. 6313-6353 ◽  
Author(s):  
L. Laakso ◽  
H. Laakso ◽  
P. P. Aalto ◽  
P. Keronen ◽  
T. Petäjä ◽  
...  

Abstract. We have analyzed one year (July 2006–July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 μg m−3, and the annual median total particle number concentration in the size range 10–840 nm was 2340 cm−3. Gases and particles had a clear seasonal and diurnal variation, which was associated with field fires and biological activity together with local meteorology. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1–28 cm−3 s−1 (median 1.9 cm−3 s−1) and nucleation mode particle growth rates were in the range 3–21 nm h−1 (median 8.5 nm h−1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.


2020 ◽  
Vol 20 (21) ◽  
pp. 13425-13441
Author(s):  
Haebum Lee ◽  
Kwangyul Lee ◽  
Chris Rene Lunder ◽  
Radovan Krejci ◽  
Wenche Aas ◽  
...  

Abstract. We conducted continuous measurements of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny Ålesund, Svalbard, from October 2016 to December 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting that these were likely produced near the site rather than being transported from other regions after growth. The average NPF frequency per year was 23 %, having the highest percentage in August (63 %). The average formation rate (J) and growth rate (GR) for 3–7 nm particles were 0.04 cm−3 s−1 and 2.07 nm h−1, respectively. Although NPF frequency in the Arctic was comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong chlorophyll a concentration and dimethyl sulfide (DMS) production capacity (southwest ocean) and was also associated with increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor NPF) are also applicable to NPF in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document