scholarly journals Using surface remote sensors to derive mixed-phase cloud radiative forcing: an example from M-PACE

2011 ◽  
Vol 11 (4) ◽  
pp. 12487-12518 ◽  
Author(s):  
G. de Boer ◽  
W. D. Collins ◽  
S. Menon ◽  
C. N. Long

Abstract. A suite of ground-based measurements are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) to derive the cloud radiative forcing of mixed-phase stratiform clouds observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0–366.4 (0.5–114.1) gm−2, and cloud physical thicknesses fall between 286–2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative fluxes using RRTMG, which are demonstrated to generally agree with measured fluxes from surface-based radiometric instrumentation. Errors in longwave flux estimates are found to be largest for thin clouds, while shortwave flux errors are generally largest for thicker clouds. Cloud radiative forcing is calculated for all profiles, and illustrates the dominance of the longwave component during this time of year, with net cloud forcing generally between 50 and 90 Wm−2. Finally, sensitivity of calculated surface fluxes to droplet effective radius, surface albedo and surface temperature are tested, with changes in minimum droplet size between 3.5 and 10 μm altering the surface shortwave flux by up to 50 Wm−2, and changes in surface albedo between 0.5 and 0.95 altering surface shortwave fluxes by up to 85 Wm−2.

2011 ◽  
Vol 11 (23) ◽  
pp. 11937-11949 ◽  
Author(s):  
G. de Boer ◽  
W. D. Collins ◽  
S. Menon ◽  
C. N. Long

Abstract. Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0–366.4 (0.5–114.1) gm−2, and cloud physical thicknesses fall between 286–2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm−2.


2004 ◽  
Vol 61 (21) ◽  
pp. 2602-2615 ◽  
Author(s):  
Sally A. McFarlane ◽  
K. Franklin Evans

Abstract The datasets currently being collected by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus represent the longest time series of ground-based cloud measurements in the tropical western Pacific region. In this series of papers, a shortwave flux closure study is presented using observations collected at the Nauru site between June 1999 and May 2000. The first paper presented frequency of occurrence of nonprecipitating clouds detected by the millimeter-wavelength cloud radar (MMCR) at Nauru and statistics of their retrieved microphysical properties. This paper presents estimates of the cloud radiative effect over the study period and results from a closure study in which retrieved cloud properties are input to a radiative transfer model and the modeled surface fluxes are compared to observations. The average surface shortwave cloud radiative forcing is 48.2 W m−2, which is significantly smaller than the cloud radiative forcing estimates found during the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) field project. The difference in the estimates during the two periods is due to the variability in cloud amount over Nauru during different phases of the El Niño–Southern Oscillation (ENSO). In the closure study, modeled and observed surface fluxes show large differences at short time scales, due to the temporal and spatial variability of the clouds observed at Nauru. Averaging over 60 min reduces the average root-mean-square difference in total flux to 10% of the observed flux. Modeled total downwelling fluxes are unbiased with respect to the observed fluxes while direct fluxes are underestimated and diffuse fluxes are overestimated. Examination of the differences indicates that cloud amount derived from the ground-based measurements is an overestimate of the radiatively important cloud amount due to the anisotropy of the cloud field at Nauru, interpolation of the radar data, uncertainty in the microwave brightness temperature measurements for thin clouds, and the uncertainty in relating the sixth moment of the droplet size distribution observed by the radar to the more radiatively important moments.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


2009 ◽  
Vol 9 (15) ◽  
pp. 5751-5758 ◽  
Author(s):  
T. Corti ◽  
T. Peter

Abstract. We present a simple model for the longwave and shortwave cloud radiative forcing based on the evaluation of extensive radiative transfer calculations, covering a global range of conditions. The simplicity of the model equations fosters the understanding on how clouds affect the Earth's energy balance. In comparison with results from a comprehensive radiative transfer model, the accuracy of our parameterization is typically better than 20%. We demonstrate the usefulness of our model using the example of tropical cirrus clouds. We conclude that possible applications for the model include the convenient estimate of cloud radiative forcing for a wide range of conditions, the evaluation of the sensitivity to changes in environmental conditions, and as a tool in education. An online version of the model is available at http://www.iac.ethz.ch/url/crf.


2009 ◽  
Vol 9 (2) ◽  
pp. 8541-8560 ◽  
Author(s):  
T. Corti ◽  
T. Peter

Abstract. We present a simple model for the longwave and shortwave cloud radiative forcing based on the evaluation of extensive radiative transfer calculations. The simplicity of the model equations fosters the understanding on how clouds affect the Earth's energy balance. In comparison with results from a comprehensive radiative transfer model, the accuracy of our parameterization is typically better than 20%. We demonstrate the usefulness of our model using the example of tropical cirrus clouds. We conclude that possible applications for the model include the fast estimate of cloud radiative forcing, the evaluation of the sensitivity to changes in environmental conditions, and as a tool in education.


2003 ◽  
Vol 16 (10) ◽  
pp. 1511-1524 ◽  
Author(s):  
Gunnar Myhre ◽  
Arne Myhre

Abstract A radiative transfer model has been used for estimating the radiative forcing due to land-use changes. Five global datasets for current vegetation cover and three datasets of preagriculture vegetation have been adopted. The vegetation datasets have been combined with three datasets for surface albedo values. A distinct feature in all the calculations is the negative radiative forcing at the northern midlatitudes due to the conversion of forest to cropland. Regionally the radiative forcing is likely to be among the strongest of the climate forcing mechanisms. A wider range is estimated for the global mean radiative forcing due to land-use changes than previously reported. The single most important factor yielding the large range in estimated forcing is the cropland surface albedo values. This underlines the importance of characterizing surface albedo correctly.


2008 ◽  
Vol 8 (10) ◽  
pp. 2763-2771 ◽  
Author(s):  
◽  
P. Minnis ◽  
◽  
◽  
◽  
...  

Abstract. The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are −138.9, 69.1, and −69.7 Wm−2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of dust indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm−2, which is 78.4% of the total dust effect. The dust direct effect is only 22.7 Wm−2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.


2008 ◽  
Vol 8 (1) ◽  
pp. 2061-2084 ◽  
Author(s):  
J. Su ◽  
J. Huang ◽  
Q. Fu ◽  
P. Minnis ◽  
J. Ge ◽  
...  

Abstract. The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are −138.9, 69.1, and −69.7 Wm−2, which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm−2, which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm−2, which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.


2017 ◽  
Vol 56 (5) ◽  
pp. 1249-1257 ◽  
Author(s):  
Simone Lolli ◽  
James R. Campbell ◽  
Jasper R. Lewis ◽  
Yu Gu ◽  
Jared W. Marquis ◽  
...  

AbstractDaytime top-of-the-atmosphere (TOA) cirrus cloud radiative forcing (CRF) is estimated for cirrus clouds observed in ground-based lidar observations at Singapore in 2010 and 2011. Estimates are derived both over land and water to simulate conditions over the broader Maritime Continent archipelago of Southeast Asia. Based on bookend constraints of the lidar extinction-to-backscatter ratio (20 and 30 sr), used to solve extinction and initialize corresponding radiative transfer model simulations, relative daytime TOA CRF is estimated at 2.858–3.370 W m−2 in 2010 (both 20 and 30 sr, respectively) and 3.078–3.329 W m−2 in 2011 and over water between −0.094 and 0.541 W m−2 in 2010 and −0.598 and 0.433 W m−2 in 2011 (both 30 and 20 sr, respectively). After normalizing these estimates for an approximately 80% local satellite-estimated cirrus cloud occurrence rate, they reduce in absolute daytime terms to 2.198–2.592 W m−2 in 2010 and 2.368–2.561 W m−2 in 2011 over land and −0.072–0.416 W m−2 in 2010 and −0.460–0.333 W m−2 in 2011 over water. These annual estimates are mostly consistent despite a tendency toward lower relative cloud-top heights in 2011. Uncertainties are described. Estimates support the open hypothesis of a meridional hemispheric gradient in cirrus cloud daytime TOA CRF globally, varying from positive near the equator to presumably negative approaching the non-ice-covered poles. They help expand upon the paradigm, however, by conceptualizing differences zonally between overland and overwater forcing that differ significantly. More global oceans are likely subject to negative daytime TOA CRF than previously implied.


Sign in / Sign up

Export Citation Format

Share Document