scholarly journals Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO<sub>2</sub>: a case study over Tsukuba

2011 ◽  
Vol 11 (11) ◽  
pp. 29883-29914 ◽  
Author(s):  
O. Uchino ◽  
N. Kikuchi ◽  
T. Sakai ◽  
I. Morino ◽  
Y. Yoshida ◽  
...  

Abstract. Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.1° N, 140.1° E), Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR), onboard the Greenhouse gases Observing SATellite (GOSAT). The lidar system measured the backscattering ratio, depolarization ratio, and/or the wavelength exponent of atmospheric particles. The lidar observations and ground-based high-resolution FTS measurements at the Tsukuba Total Carbon Column Observing Network (Tsukuba TCCON) site were recorded simultaneously during passages of GOSAT over Tsukuba. GOSAT SWIR XCO2 data (version 01.xx) released in August 2010 were compared with the lidar and Tsukuba TCCON data. High-altitude aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO2 results. By taking into account the observed aerosol/cirrus vertical profiles and using a more adequate solar irradiance database in the GOSAT SWIR retrieval, the difference between the GOSAT SWIR XCO2 data and the Tsukuba TCCON data was greatly reduced.

2012 ◽  
Vol 12 (7) ◽  
pp. 3393-3404 ◽  
Author(s):  
O. Uchino ◽  
N. Kikuchi ◽  
T. Sakai ◽  
I. Morino ◽  
Y. Yoshida ◽  
...  

Abstract. Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.05° N, 140.12° E), Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR), onboard the Greenhouse gases Observing SATellite (GOSAT). The lidar system measured the backscattering ratio, depolarization ratio, and/or the wavelength exponent of atmospheric particles. The lidar observations and ground-based high-resolution FTS measurements at the Tsukuba Total Carbon Column Observing Network (Tsukuba TCCON) site were recorded simultaneously during passages of GOSAT over Tsukuba. GOSAT SWIR XCO2 data (Version 01.xx) released in August 2010 were compared with the lidar and Tsukuba TCCON data. High-altitude aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO2 results. By taking into account the observed aerosol/cirrus vertical profiles and using a more adequate solar irradiance database in the GOSAT SWIR retrieval, the difference between the GOSAT SWIR XCO2 data and the Tsukuba TCCON data was reduced. The 3-band retrieval approach where the aerosol and cirrus profiles were retrieved gave us the best results and the retrieved XCO2 data followed the seasonal cycle of ~8 ppm observed at Tsukuba TCCON site.


2021 ◽  
Vol 893 (1) ◽  
pp. 012068
Author(s):  
K I N Rahmi ◽  
N Febrianti ◽  
I Prasasti

Abstract Forest/land fire give bad impact of heavy smoke on peatland area in Indonesia. Forest/land fire smoke need to be identified the distribution periodically. New satellite of GCOM-C has been launched to monitor climate condition and have visible, near infrared and thermal infrared. This study has objective to identify fire smoke from GCOM-C data. GCOM-C data has wavelength range from 0.38 to 12 μm it covers visible, near infrared, short-wave infrared and thermal infrared. It is relatively similar to MODIS or Himawari-8 images which could identify forest/land fire smoke. The methodology is visual interpretation to detect forest/land fire smoke using near infrared band (VN08), shortwave infrared band (SW03), and thermal bands (T01 and T02). Hotspot data is overlaid with GCOM-C image to represent the location of fire events. Combination of composite RGB image has been applied to detect forest/land fire smoke. GCOM-C image of VN8 bands and combination of thermal band in composite image could be used to detect fire smoke in Pulang Pisau, Central Kalimantan.


2016 ◽  
Vol 9 (9) ◽  
pp. 4269-4278 ◽  
Author(s):  
Moritz Haarig ◽  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Igor Veselovskii ◽  
David N. Whiteman ◽  
...  

Abstract. For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen and oxygen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532, and 1064 nm. The cirrus backscatter coefficients were found to be equal for all three wavelengths keeping the retrieval uncertainties in mind. The multiple-scattering-corrected cirrus extinction coefficients at 355 nm were on average about 20–30 % lower than the ones for 532 and 1064 nm. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 31 ± 5 sr (355 nm), 36 ± 5 sr (532 nm), and 38 ± 5 sr (1064 nm) in this single study. We further discussed the requirements needed to obtain aerosol extinction profiles in the lower troposphere at 1064 nm with good accuracy (20 % relative uncertainty) and appropriate temporal and vertical resolution.


2012 ◽  
Vol 5 (1) ◽  
pp. 1355-1379
Author(s):  
F. Forster ◽  
R. Sussmann ◽  
M. Rettinger ◽  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
...  

Abstract. We present the intercalibration of dry-air column-averaged mole fractions of methane (XCH4) retrieved from solar FTIR measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l.). Direct comparison of the retrieved MIR and NIR time series shows a phase shift in XCH4 seasonality, i.e. a significant time-dependent bias leading to a standard deviation (stdv) of the difference time series (NIR-MIR) of 8.4 ppb. After eliminating differences in a prioris by using ACTM-simulated profiles as a common prior, the seasonalities of the (corrected) MIR and NIR time series agree within the noise (stdv = 5.2 ppb for the difference time series). The difference time series (NIR-MIR) do not show a significant trend. Therefore it is possible to use a simple scaling factor for the intercalibration without a time-dependent linear or seasonal component. Using the Garmisch and Wollongong data together, we obtain an overall calibration factor MIR/NIR = 0.9926(18). The individual calibration factors per station are 0.9940(14) for Garmisch and 0.9893(40) for Wollongong. They agree within their error bars with the overall calibration factor which can therefore be used for both stations. Our results suggest that after applying the proposed intercalibration concept to all stations performing both NIR and MIR measurements, it should be possible to obtain one refined overall intercalibration factor for the two networks. This would allow to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.


2020 ◽  
Author(s):  
Jennifer M. Jacobs ◽  
Adam G. Hunsaker ◽  
Franklin B. Sullivan ◽  
Michael Palace ◽  
Elizabeth A. Burakowski ◽  
...  

Abstract. Shallow snowpack conditions, which occur throughout the year in many regions as well as during accumulation and ablation periods in all regions, are important in water resources, agriculture, ecosystems, and winter recreation. Terrestrial and airborne (manned and unmanned) laser scanning and structure from motion (SfM) techniques have emerged as viable methods to map snow depths. Lidar on an unmanned aerial vehicle is also a potential method to observe field and slope scale variations of shallow snowpacks. This paper describes an unmanned aerial lidar system, which uses commercially available components, for snow depth mapping on the landscape scale. The system was assessed in a mixed deciduous and coniferous forest and open field for a shallow snowpack (


2016 ◽  
Author(s):  
Moritz Haarig ◽  
Ronny Engelmann ◽  
Albert Ansmann ◽  
Igor Veselovskii ◽  
David N. Whiteman ◽  
...  

Abstract. For the first time, vertical profiles of the 1064 nm particle extinction coefficient obtained from Raman lidar observations at 1058 nm (nitrogen rotational Raman backscatter) are presented. We applied the new technique in the framework of test measurements and performed several cirrus observations of particle backscatter and extinction coefficients, and corresponding extinction-to-backscatter ratios at the wavelengths of 355, 532m and 1064 nm.


2013 ◽  
Vol 6 (2) ◽  
pp. 397-418 ◽  
Author(s):  
R. Sussmann ◽  
A. Ostler ◽  
F. Forster ◽  
M. Rettinger ◽  
N. M. Deutscher ◽  
...  

Abstract. We present the first intercalibration of dry-air column-averaged mole fractions of methane (XCH4) retrieved from solar Fourier transform infrared (FTIR) measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l.), and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l.). Direct comparison of the retrieved MIR and NIR XCH4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation (stdv) of the difference time series (NIR–MIR) of 7.2 ppb. After reducing time-dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced (stdv = 5.2 ppb). A linear fit to the MIR/NIR scatter plot of monthly means based on same-day coincidences does not show a y-intercept that is statistically different from zero, and the MIR/NIR intercalibration factor is found to be close to ideal within 2-σ uncertainty, i.e. 0.9996(8). The difference time series (NIR–MIR) do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2-σ uncertainty. At Wollongong the seasonal cycle of methane is less pronounced and corresponding smoothing errors are not as significant, enabling standard MIR and NIR retrievals to be used directly, without correction to a common a priori. Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.


2019 ◽  
Vol 12 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Joseph Mendonca ◽  
Kimberly Strong ◽  
Debra Wunch ◽  
Geoffrey C. Toon ◽  
David A. Long ◽  
...  

Abstract. High-resolution, laboratory, absorption spectra of the a1Δg←X3Σg- oxygen (O2) band measured using cavity ring-down spectroscopy were fitted using the Voigt and speed-dependent Voigt line shapes. We found that the speed-dependent Voigt line shape was better able to model the measured absorption coefficients than the Voigt line shape. We used these line shape models to calculate absorption coefficients to retrieve atmospheric total columns abundances of O2 from ground-based spectra from four Fourier transform spectrometers that are a part of the Total Carbon Column Observing Network (TCCON). Lower O2 total columns were retrieved with the speed-dependent Voigt line shape, and the difference between the total columns retrieved using the Voigt and speed-dependent Voigt line shapes increased as a function of solar zenith angle. Previous work has shown that carbon dioxide (CO2) total columns are better retrieved using a speed-dependent Voigt line shape with line mixing. The column-averaged dry-air mole fraction of CO2 (XCO2) was calculated using the ratio between the columns of CO2 and O2 retrieved (from the same spectra) with both line shapes from measurements taken over a 1-year period at the four sites. The inclusion of speed dependence in the O2 retrievals significantly reduces the air mass dependence of XCO2, and the bias between the TCCON measurements and calibrated integrated aircraft profile measurements was reduced from 1 % to 0.4 %. These results suggest that speed dependence should be included in the forward model when fitting near-infrared CO2 and O2 spectra to improve the accuracy of XCO2 measurements.


2020 ◽  
Vol 12 (18) ◽  
pp. 3028
Author(s):  
Wenyan Ge ◽  
Qiuming Cheng ◽  
Linhai Jing ◽  
Fei Wang ◽  
Molei Zhao ◽  
...  

With several bands covering iron-bearing mineral spectral features, Sentinel-2 has advantages for iron mapping. However, due to the inconsistent spatial resolution, the sensitivity of Sentinel-2 data to detect iron-bearing minerals may be decreased by excluding the 60 m bands and neglecting the 20 m vegetation red-edge bands. Hence, the capability of Sentinel-2 for iron-bearing minerals mapping were assessed by applying a multivariate (MV) method to pansharpen Sentinel-2 data. Firstly, the Sentinel-2 bands with spatial resolution 20 m and 60 m (except band 10) were pansharpened to 10 m. Then, extraction of iron-bearing minerals from the MV-fused image was explored in the Cuprite area, Nevada, USA. With the complete set of 12 bands with a fine spatial resolution, three band ratios (6/1, 6/8A and (6 + 7)/8A) of the fused image were proposed for the extraction of hematite + goethite, hematite + jarosite and the mixture of iron-bearing minerals, respectively. Additionally, band ratios of Sentinel-2 data for iron-bearing minerals in previous studies were modified with substitution of narrow near infrared band 8A for band 8. Results demonstrated that the capability for detection of iron-bearing minerals using Sentinel-2 data was improved by consideration of two extra bands and the unified fine spatial resolution.


Sign in / Sign up

Export Citation Format

Share Document