scholarly journals Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity and succinic acid concentration

2012 ◽  
Vol 12 (8) ◽  
pp. 19039-19087
Author(s):  
J. Zábori ◽  
M. Matisāns ◽  
R. Krejci ◽  
E. D. Nilsson ◽  
J. Ström

Abstract. Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Smaller particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85–90% of the total aerosol number to 60–70% of the total aerosol number at 10 °C water temperature. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg−1 and 35 g kg−1 showed no influence on the relative shape of a particle number size distribution, nor did a change in water temperature between 0 °C and 16 °C. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with Dp < 0.312 μm decreased by 43% when the succinic acid concentration in NaCl water at Tw = 0 °C was increased from 0 μmol l−1 to 2446 μmol l−1. Different organic constituents and perhaps inorganic substances resulted in a particle number shift towards larger particle sizes, when comparing a size distribution resulting from pure NaCl water to size distributions resulting from Arctic Ocean water and resulting from NaCl water with a succinic acid concentration of 2446 μmol l−1.

2012 ◽  
Vol 12 (22) ◽  
pp. 10709-10724 ◽  
Author(s):  
J. Zábori ◽  
M. Matisāns ◽  
R. Krejci ◽  
E. D. Nilsson ◽  
J. Ström

Abstract. Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85–90% of the total aerosol number to 10 °C, where they represent 60–70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg−1 and 35 g kg−1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L−1 to 94 μmol L−1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.


2012 ◽  
Vol 12 (21) ◽  
pp. 10405-10421 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
A. M. L. Ekman ◽  
E. M. Mårtensson ◽  
J. Ström ◽  
...  

Abstract. Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known. In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.


2012 ◽  
Vol 12 (6) ◽  
pp. 16085-16130 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
A. M. L. Ekman ◽  
E. M. Mårtensson ◽  
J. Ström ◽  
...  

Abstract. Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known. In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1 °C and 9 °C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.


2013 ◽  
Vol 13 (9) ◽  
pp. 4783-4799 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
J. Ström ◽  
P. Vaattovaara ◽  
A. M. L. Ekman ◽  
...  

Abstract. Primary marine aerosols (PMAs) are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent, will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw) range between −1°C and 15°C. A sharp decrease in PMA emissions for a Tw increase from −1°C to 4°C was followed by a lower rate of change in PMA emissions for Tw up to about 6°C. Near constant number concentrations for water temperatures between 6°C to 10°C and higher were recorded. Even though the total particle number concentration changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for a dry diameter (Dp< 0.125μm measured during winter conditions were similar (deviation of up to 3%), or lower (up to 70%) than the ones measured during summer conditions (for the same water temperature range). For Dp > 0.125μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%). The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1°C to 10°C during winter measurements showed a decrease in the peak of relative particle number concentration at about a Dp of 0.180μm, while an increase was observed for particles with Dp > 1μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range 7–11°C. The differences in the shape of the number size distributions between winter and summer may be caused by different production of organic material in water, different local processes modifying the water masses within the fjord (for example sea ice production in winter and increased glacial meltwater inflow during summer) and different origin of the dominant sea water mass. Further research is needed regarding the contribution of these factors to the PMA production.


2012 ◽  
Vol 12 (12) ◽  
pp. 31153-31186 ◽  
Author(s):  
J. Zábori ◽  
R. Krejci ◽  
J. Ström ◽  
P. Vaattovaara ◽  
A. M. L. Ekman ◽  
...  

Abstract. Primary marine aerosols (PMA) are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw) range between −1 °C and 15 °C. A sharp decrease in PMA emissions for a Tw increase from −1 °C to 4 °C was followed by a lower rate of change in PMA emissions for Tw up to about 6 °C. Near constant number concentrations for water temperatures between 6 °C to 10 °C and higher were recorded. Even though the total particle number concentrations changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for Dp < 0.125 μm measured during winter conditions were similar (deviation of up to 3%), or lower (up to 70%) than the ones measured during summer conditions (for the same water temperature range). For Dp > 0.125 μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%). The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1 °C to 10 °C during winter measurements showed a decrease in the peak of relative particle number concentration at about Dp of 0.180 μm, while an increase was observed for particles with Dp > 1 μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range 7–11 °C. The differences in the shape of the number size distributions between winter and summer may be caused by different production of organic material in water, different local processes modifying the water masses within the fjord (like sea ice production in winter and increased glacial melt water inflow during summer) and different origin of the dominant sea water mass. Further research is needed regarding the contribution of these factors to the PMA production.


1988 ◽  
Vol 25 (5) ◽  
pp. 701-709 ◽  
Author(s):  
A. E. Aksu ◽  
G. Vilks

Oxygen and carbon isotopic analyses have been performed on the tests of Planulina wuellerstorfi and three size fractions of sinistral Neogloboquadrina pachyderma recovered from 33 Arctic Ocean surface-sediment samples. Stable isotopic compositions of N. pachyderma are found to be dependent on the test size: larger specimens show considerable enrichment in both δ18O and δ18C. The difference between the isotopic compositions of the 63–125 and 125–250 μm size fractions in N. pachyderma can be explained by biogenic fractionation effects during foraminiferal test growth. Larger (250–500 μm) N. pachyderma displayed accretions of secondary calcite, i.e., the outermost shell contained significant amounts of inorganically precipitated magnesium calcite. Thus, larger foraminifera may not be suited for down-core stable isotopic studies. There is a difference of ~2‰ between δ18O values of surface samples from the eastern and western Arctic Ocean, reflecting large differences between surface-water salinity in these regions. Therefore, oxygen isotopic data may have limited use as a chronostratigraphic tool in down-core studies in the Arctic Ocean, but we can use them to infer past variations in surface-water salinities. Planulina wuellerstorfi also showed depletions of both δ18O and δ18C in its calcite tests relative to calcite precipitated in isotopic equilibrium with ambient sea water; these depletions ranged from −0.8 to −0.9‰ in δ18Oand −1.2 to −0.9‰ in δ18C. This taxon is found to deposit its shell very close to the δ18C of ΣCO2 of bottom waters.


1987 ◽  
Vol 53 (12) ◽  
pp. 2169-2178 ◽  
Author(s):  
Chifumi Imai ◽  
Syoiti Tanaka

Sign in / Sign up

Export Citation Format

Share Document