scholarly journals The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea-ice extents of 2007 and 2012

2013 ◽  
Vol 13 (1) ◽  
pp. 177-199 ◽  
Author(s):  
A. Devasthale ◽  
T. Koenigk ◽  
J. Sedlar ◽  
E. J. Fetzer

Abstract. The record sea-ice minimum (SIM) extents observed during the summers of 2007 and 2012 in the Arctic are stark evidence of accelerated sea ice loss during the last decade. Improving our understanding of the Arctic atmosphere and accurate quantification of its characteristics becomes ever more crucial, not least to improve predictions of such extreme events in the future. In this context, the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite provides crucial insights due to its ability to provide 3-D information on atmospheric thermodynamics. Here, we facilitate comparisons in the evolution of the thermodynamic state of the Arctic atmosphere during these two SIM events using a decade long AIRS observational record (2003–2012). It is shown that the meteorological conditions during 2012 were not extreme but three factors in preconditioning from winter through early summer probably played an important role in accelerating sea-ice melt. First, the marginal sea-ice zones along the central Eurasian and North Atlantic sectors remained warm throughout winter and early spring in 2012 preventing thicker ice build-up. Second, the circulation pattern favoured efficient sea-ice transport out of the Arctic in the Atlantic sector during late spring and early summer in 2012 compared to 2007. Third, additional warming over the Canadian Archipelago and southeast Beaufort Sea from May onward further contributed to accelerated sea-ice melt. All these factors may have lead already thin and declining sea-ice cover to pass below the previous sea-ice extent minimum of 2007. In sharp contrast to 2007, negative surface temperature anomalies and increased cloudiness were observed over the East Siberian and Chukchi Seas in the summer of 2012. The results suggest that satellite-based monitoring of atmospheric preconditioning could be a critical source of information in predicting extreme sea-ice melting events in the Arctic.

2013 ◽  
Vol 13 (15) ◽  
pp. 7441-7450 ◽  
Author(s):  
A. Devasthale ◽  
J. Sedlar ◽  
T. Koenigk ◽  
E. J. Fetzer

Abstract. The record sea ice minimum (SIM) extents observed during the summers of 2007 and 2012 in the Arctic are stark evidence of accelerated sea ice loss during the last decade. Improving our understanding of the Arctic atmosphere and accurate quantification of its characteristics becomes ever more crucial, not least to improve predictions of such extreme events in the future. In this context, the Atmospheric Infrared Sounder (AIRS) instrument onboard NASA's Aqua satellite provides crucial insights due to its ability to provide 3-D information on atmospheric thermodynamics. Here, we facilitate comparisons in the evolution of the thermodynamic state of the Arctic atmosphere during these two SIM events using a decade-long AIRS observational record (2003–2012). It is shown that the meteorological conditions during 2012 were not extreme, but three factors of preconditioning from winter through early summer played an important role in accelerating sea ice melt. First, the marginal sea ice zones along the central Eurasian and North Atlantic sectors remained warm throughout winter and early spring in 2012 preventing thicker ice build-up. Second, the circulation pattern favoured efficient sea ice transport out of the Arctic in the Atlantic sector during late spring and early summer in 2012 compared to 2007. Third, additional warming over the Canadian archipelago and southeast Beaufort Sea from May onward further contributed to accelerated sea ice melt. All these factors may have lead the already thin and declining sea ice cover to pass below the previous sea ice extent minimum of 2007. In sharp contrast to 2007, negative surface temperature anomalies and increased cloudiness were observed over the East Siberian and Chukchi seas in the summer of 2012. The results suggest that satellite-based monitoring of atmospheric preconditioning could be a critical source of information in predicting extreme sea ice melting events in the Arctic.


2016 ◽  
Vol 29 (3) ◽  
pp. 1143-1159 ◽  
Author(s):  
Marie-Luise Kapsch ◽  
Rune Grand Graversen ◽  
Michael Tjernström ◽  
Richard Bintanja

Abstract The Arctic summer sea ice has diminished fast in recent decades. A strong year-to-year variability on top of this trend indicates that sea ice is sensitive to short-term climate fluctuations. Previous studies show that anomalous atmospheric conditions over the Arctic during spring and summer affect ice melt and the September sea ice extent (SIE). These conditions are characterized by clouds, humidity, and heat anomalies that all affect downwelling shortwave (SWD) and longwave (LWD) radiation to the surface. In general, positive LWD anomalies are associated with cloudy and humid conditions, whereas positive anomalies of SWD appear under clear-sky conditions. Here the effect of realistic anomalies of LWD and SWD on summer sea ice is investigated by performing experiments with the Community Earth System Model. The SWD and LWD anomalies are studied separately and in combination for different seasons. It is found that positive LWD anomalies in spring and early summer have significant impact on the September SIE, whereas winter anomalies show only little effect. Positive anomalies in spring and early summer initiate an earlier melt onset, hereby triggering several feedback mechanisms that amplify melt during the succeeding months. Realistic positive SWD anomalies appear only important if they occur after the melt has started and the albedo is significantly reduced relative to winter conditions. Simulations where both positive LWD and negative SWD anomalies are implemented simultaneously, mimicking cloudy conditions, reveal that clouds during spring have a significant impact on summer sea ice while summer clouds have almost no effect.


2021 ◽  
Vol 15 (12) ◽  
pp. 5473-5482
Author(s):  
Jinlei Chen ◽  
Shichang Kang ◽  
Wentao Du ◽  
Junming Guo ◽  
Min Xu ◽  
...  

Abstract. The retreat of sea ice has been found to be very significant in the Arctic under global warming. It is projected to continue and will have great impacts on navigation. Perspectives on the changes in sea ice and navigability are crucial to the circulation pattern and future of the Arctic. In this investigation, the decadal changes in sea ice parameters were evaluated by the multi-model from the Coupled Model Inter-comparison Project Phase 6, and Arctic navigability was assessed under two shared socioeconomic pathways (SSPs) and two vessel classes with the Arctic transportation accessibility model. The sea ice extent shows a high possibility of decreasing along SSP5-8.5 under current emissions and climate change. The decadal rate of decreasing sea ice extent will increase in March but decrease in September until 2060, when the oldest ice will have completely disappeared and the sea ice will reach an irreversible tipping point. Sea ice thickness is expected to decrease and transit in certain parts, declining by −0.22 m per decade after September 2060. Both the sea ice concentration and volume will thoroughly decline at decreasing decadal rates, with a greater decrease in volume in March than in September. Open water ships will be able to cross the Northern Sea Route and Northwest Passage between August and October during the period from 2045 to 2055, with a maximum navigable percentage in September. The time for Polar Class 6 (PC6) ships will shift to October–December during the period from 2021 to 2030, with a maximum navigable percentage in October. In addition, the central passage will be open for PC6 ships between September and October during 2021–2030.


2018 ◽  
Vol 12 (2) ◽  
pp. 433-452 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative “compactness” of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, “New Arctic”, sea ice regime.


2006 ◽  
Vol 44 ◽  
pp. 193-199 ◽  
Author(s):  
Thomas C. Grenfell ◽  
Donald K. Perovich ◽  
Hajo Eicken ◽  
Bonnie Light ◽  
Jeremy Harbeck ◽  
...  

AbstractWe present results from a comprehensive field study carried out near Barrow, Alaska, USA, designed to characterize local- to intermediate-scale sea-ice processes in the Arctic coastal zone of central importance to the annual cycle and evolution of the coastal sea ice. Included in this are the behavior of the snow cover of the ice and adjacent tundra and lake system; concurrent studies of mass balance of the sea ice and lake ice; interaction of shortwave radiation with the shore-fast ice and the adjacent land surfaces; evolution of the area coverage and distribution of the various surface types; and the resulting regional albedo values. Maximum snow depths decreased during 2000–02 from 0.38 m to 0.26 m. Ice-melt rates in 2001 were 0.05 and 0.028md–1 at the top and bottom of the sea ice respectively, two to three times larger than observations from the central Arctic. Detailed surface results combined with aircraft photography were used to calculate regional albedos for the late spring and early summer of 2001. Values ranged from 0.8 for all cold snow-covered surfaces to approximately 0.4 for melting sea ice and lake ice vs 0.18 for bare tundra. Regional and surface-based values of cumulative shortwave radiation entering the ice were consistent, indicating that albedo sampling on a scale of 200m can provide a useful representation for regional sea-ice albedo.


2021 ◽  
Vol 13 (11) ◽  
pp. 2162
Author(s):  
Lei Zheng ◽  
Xiao Cheng ◽  
Zhuoqi Chen ◽  
Qi Liang

The past decades have witnessed a rapid loss of the Arctic sea ice and a significant lengthening of the melt season. The years with the lowest summertime sea ice minimum were found to be accompanied by the latest freeze-up onset on record. Here, a synthetic approach is taken to examine the connections between sea ice melt timing and summer sea ice evolution from the remote sensing perspective. A 40-year (1979–2018) satellite-based time-series analysis shows that the date of autumn sea ice freeze-up is significantly correlated with the sea ice extent in early summer (r = −0.90, p < 0.01), while the spring melt onset is not a promising predictor of summer sea ice evolution. The delay in Arctic sea ice freeze-up (0.61 days year−1) in the Arctic was accompanied by a decline in surface albedo (absolute change of −0.13% year−1), an increase in net short-wave radiation (0.21 W m−2 year−1), and an increase in skin temperature (0.08 °C year−1) in summer. Sea ice loss would be the key reason for the delay in autumn freeze-up, especially in the Laptev, East-Siberian, Chukchi and Beaufort Seas, where sea ice has significantly declined throughout the summer, and strong correlations were found between the freeze-up onset and the solar radiation budget since early summer. This study highlights a connection between the summer sea ice melting and the autumn refreezing process through the ice-albedo feedback based on multisource satellite-based observations.


2018 ◽  
Vol 99 (1) ◽  
pp. 61-81 ◽  
Author(s):  
Albert Gabric ◽  
Patricia Matrai ◽  
Graham Jones ◽  
Julia Middleton

AbstractAccurate estimation of the climate sensitivity requires a better understanding of the nexus between polar marine ecosystem responses to warming, changes in sea ice extent, and emissions of marine biogenic aerosol (MBA). Sea ice brine channels contain very high concentrations of MBA precursors that, once ventilated, have the potential to alter cloud microphysical properties, such as cloud droplet number, and the regional radiative energy balance. In contrast to temperate latitudes, where the pelagic phytoplankton are major sources of MBAs, the seasonal sea ice dynamic plays a key role in determining MBA concentration in both the Arctic and Antarctic. We review the current knowledge of MBA sources and the link between ice melt and emissions of aerosol precursors in the polar oceans. We illustrate the processes by examining decadal-scale time series in various satellite-derived parameters such as aerosol optical depth (AOD), sea ice extent, and phytoplankton biomass in the sea ice zones of both hemispheres. The sharpest gradients in aerosol indicators occur during the spring period of ice melt. In sea ice–covered waters, the peak in AOD occurs well before the annual maximum in biomass in both hemispheres. The results provide strong evidence that suggests seasonal changes in sea ice and ocean biology are key drivers of the polar aerosol cycle. The positive trend in annual-mean Antarctic sea ice extent is now almost one-third of the magnitude of the annual-mean decrease in Arctic sea ice, suggesting the potential for different patterns of aerosol emissions in the future.


2011 ◽  
Vol 24 (24) ◽  
pp. 6573-6581 ◽  
Author(s):  
Salil Mahajan ◽  
Rong Zhang ◽  
Thomas L. Delworth

Abstract The simulated impact of the Atlantic meridional overturning circulation (AMOC) on the low-frequency variability of the Arctic surface air temperature (SAT) and sea ice extent is studied with a 1000-year-long segment of a control simulation of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1. The simulated AMOC variations in the control simulation are found to be significantly anticorrelated with the Arctic sea ice extent anomalies and significantly correlated with the Arctic SAT anomalies on decadal time scales in the Atlantic sector of the Arctic. The maximum anticorrelation with the Arctic sea ice extent and the maximum correlation with the Arctic SAT occur when the AMOC index leads by one year. An intensification of the AMOC is associated with a sea ice decline in the Labrador, Greenland, and Barents Seas in the control simulation, with the largest change occurring in winter. The recent declining trend in the satellite-observed sea ice extent also shows a similar pattern in the Atlantic sector of the Arctic in the winter, suggesting the possibility of a role of the AMOC in the recent Arctic sea ice decline in addition to anthropogenic greenhouse-gas-induced warming. However, in the summer, the simulated sea ice response to the AMOC in the Pacific sector of the Arctic is much weaker than the observed declining trend, indicating a stronger role for other climate forcings or variability in the recently observed summer sea ice decline in the Chukchi, Beaufort, East Siberian, and Laptev Seas.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mohamed M. M. Ahmed ◽  
Brent G. T. Else ◽  
Brian Butterworth ◽  
David W. Capelle ◽  
Céline Guéguen ◽  
...  

Estimating sea–air CO2 fluxes in coastal seas remains a source of uncertainty in global carbon budgets because processes like primary production, upwelling, water mixing, and freshwater inputs produce high spatial and temporal variability of CO2 partial pressure (pCO2). As a result, improving our pCO2 baseline observations in these regions is important, especially in sub-Arctic and Arctic seas that are experiencing strong impacts of climate change. Here, we show the patterns and main processes controlling seawater pCO2 and sea–air CO2 fluxes in Hudson Bay during the 2018 spring and early summer seasons. We observed spatially limited pCO2 supersaturation (relative to the atmosphere) near river mouths and beneath sea ice and widespread undersaturated pCO2 in offshore and ice-melt-influenced waters. pCO2 was highly correlated with salinity and temperature, with a limited but statistically significant relationship with chlorophyll a and fluorescent dissolved organic matter. Hudson Bay on average was undersaturated with respect to atmospheric CO2, which we attribute mainly to the dominance of sea-ice meltwater. We calculated an average net CO2 flux of about –5mmol CO2 m–2 day–1 (–3.3 Tg C) during the spring and early summer seasons (92 days). Combining this result with extrapolated estimates for late summer and fall seasons, we estimate the annual CO2 flux of Hudson Bay during the open water season (184 days) to be –7.2 Tg C. Our findings indicate that the bay on average is a weaker CO2 sink than most other Arctic seas, emphasizing the importance of properly accounting for seasonal variability in the Arctic coastal shelves to obtain reliable sea–air CO2 exchange budgets.


2018 ◽  
Vol 15 (10) ◽  
pp. 3169-3188 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michel Poulin ◽  
...  

Abstract. Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit (< 0.01 nmol L−1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ∼ 3 up to ∼ 6 nmol L−1 (avg. 3.7 ± 1.6 nmol L−1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.


Sign in / Sign up

Export Citation Format

Share Document