scholarly journals Evaluation of OMI operational standard NO<sub>2</sub> column retrievals using in situ and surface-based NO<sub>2</sub> observations

2014 ◽  
Vol 14 (10) ◽  
pp. 14519-14573 ◽  
Author(s):  
L. N. Lamsal ◽  
N. A. Krotkov ◽  
E. A. Celarier ◽  
W. H. Swartz ◽  
K. E. Pickering ◽  
...  

Abstract. We assess the standard operational nitrogen dioxide (NO2) data product (OMNO2, version 2.1) retrieved from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite using a combination of aircraft and surface in situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8) with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.

2014 ◽  
Vol 14 (21) ◽  
pp. 11587-11609 ◽  
Author(s):  
L. N. Lamsal ◽  
N. A. Krotkov ◽  
E. A. Celarier ◽  
W. H. Swartz ◽  
K. E. Pickering ◽  
...  

Abstract. We assess the standard operational nitrogen dioxide (NO2) data product (OMNO2, version 2.1) retrieved from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite using a combination of aircraft and surface in~situ measurements as well as ground-based column measurements at several locations and a bottom-up NOx emission inventory over the continental US. Despite considerable sampling differences, NO2 vertical column densities from OMI are modestly correlated (r = 0.3–0.8) with in situ measurements of tropospheric NO2 from aircraft, ground-based observations of NO2 columns from MAX-DOAS and Pandora instruments, in situ surface NO2 measurements from photolytic converter instruments, and a bottom-up NOx emission inventory. Overall, OMI retrievals tend to be lower in urban regions and higher in remote areas, but generally agree with other measurements to within ± 20%. No consistent seasonal bias is evident. Contrasting results between different data sets reveal complexities behind NO2 validation. Since validation data sets are scarce and are limited in space and time, validation of the global product is still limited in scope by spatial and temporal coverage and retrieval conditions. Monthly mean vertical NO2 profile shapes from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) used in the OMI retrievals are highly consistent with in situ aircraft measurements, but these measured profiles exhibit considerable day-to-day variation, affecting the retrieved daily NO2 columns by up to 40%. This assessment of OMI tropospheric NO2 columns, together with the comparison of OMI-retrieved and model-simulated NO2 columns, could offer diagnostic evaluation of the model.


2018 ◽  
Vol 18 (22) ◽  
pp. 16571-16586 ◽  
Author(s):  
Fei Liu ◽  
Sungyeon Choi ◽  
Can Li ◽  
Vitali E. Fioletov ◽  
Chris A. McLinden ◽  
...  

Abstract. Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor have been used to detect emissions from large point sources. Emissions from over 400 sources have been quantified individually based on OMI observations, accounting for about a half of total reported anthropogenic SO2 emissions. Here we report a newly developed emission inventory, OMI-HTAP, by combining these OMI-based emission estimates and the conventional bottom-up inventory, HTAP, for smaller sources that OMI is not able to detect. OMI-HTAP includes emissions from OMI-detected sources that are not captured in previous leading bottom-up inventories, enabling more accurate emission estimates for regions with such missing sources. In addition, our approach offers the possibility of rapid updates to emissions from large point sources that can be detected by satellites. Our methodology applied to OMI-HTAP can also be used to merge improved satellite-derived estimates with other multi-year bottom-up inventories, which may further improve the accuracy of the emission trends. OMI-HTAP SO2 emissions estimates for Persian Gulf, Mexico, and Russia are 59 %, 65 %, and 56 % larger than HTAP estimates in 2010, respectively. We have evaluated the OMI-HTAP inventory by performing simulations with the Goddard Earth Observing System version 5 (GEOS-5) model. The GEOS-5 simulated SO2 concentrations driven by both HTAP and OMI-HTAP were compared against in situ measurements. We focus for the validation on 2010 for which HTAP is most valid and for which a relatively large number of in situ measurements are available. Results show that the OMI-HTAP inventory improves the agreement between the model and observations, in particular over the US, with the normalized mean bias decreasing from 0.41 (HTAP) to −0.03 (OMI-HTAP) for 2010. Simulations with the OMI-HTAP inventory capture the worldwide major trends of large anthropogenic SO2 emissions that are observed with OMI. Correlation coefficients of the observed and modeled surface SO2 in 2014 increase from 0.16 (HTAP) to 0.59 (OMI-HTAP) and the normalized mean bias dropped from 0.29 (HTAP) to 0.05 (OMI-HTAP), when we updated 2010 HTAP emissions with 2014 OMI-HTAP emissions in the model.


2018 ◽  
Author(s):  
Fei Liu ◽  
Sungyeon Choi ◽  
Can Li ◽  
Vitali E. Fioletov ◽  
Chris A. McLinden ◽  
...  

Abstract. Sulfur dioxide (SO2) measurements from the Ozone Monitoring Instrument (OMI) satellite sensor have been used to detect emissions from large point sources. Emissions from over 400 sources have been quantified individually based on OMI observations, accounting for about a half of total reported anthropogenic SO2 emissions. Here we report a newly developed emission inventory, OMI-HTAP, by combining these OMI-based emission estimates and the conventional bottom-up inventory, HTAP, for smaller sources that OMI is not able to detect. OMI-HTAP includes emissions from OMI-detected sources that are not captured in previous leading bottom-up inventories, enabling more accurate emission estimates for regions with such missing sources. OMI-HTAP SO2 emissions estimates for Persian Gulf, Mexico, and Russia are 59 %, 65 %, and 56 % higher than HTAP estimates, respectively, in year 2010. We have evaluated the OMI-HTAP inventory by performing simulations with the Goddard Earth Observing System version 5 (GEOS-5) model. The GEOS-5 simulated SO2 concentrations driven by both HTAP and OMI-HTAP were compared against in situ measurements. We focus the validation on year 2010 for which HTAP is most valid and a relatively large number of in situ measurements are available. Results show that the OMI-HTAP inventory improves the model agreement with observations, in particular over the US, with the normalized mean bias decreasing from 0.41 (HTAP) to −0.03 (OMI-HTAP) for year 2010. Additionally, our approach offers the possibility of rapid updates to emissions from large point sources that can be detected by satellites. Simulations with the OMI-HTAP inventory capture the worldwide major trends of large anthropogenic SO2 emissions that are observed with OMI. For example, correlation coefficients of the observed and modelled surface SO2 in 2014 increase from 0.16 (HTAP) to 0.59 (OMI-HTAP) and the normalized mean bias dropped from 0.29 (HTAP) to 0.05 (OMI-HTAP), when we updated 2010 HTAP emissions with 2014 OMI-HTAP emissions in the model. Our methodology applied to OMI-HTAP can also be used to merge improved satellite-derived estimates with other multi-year bottom-up inventories, which may further improve the accuracy of the emission trends.


2014 ◽  
Vol 14 (18) ◽  
pp. 10363-10381 ◽  
Author(s):  
G. C. M. Vinken ◽  
K. F. Boersma ◽  
J. D. Maasakkers ◽  
M. Adon ◽  
R. V. Martin

Abstract. Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr−1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI). We use a state-of-science soil NOx emission inventory (Hudman et al., 2012) as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicate that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we use a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We find that responses of simulated NO2 columns to changing NOx emissions are suppressed over low NOx regions, and account for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from −40% to +90%), and globally our top-down inventory is 4–35% higher than the GEOS-Chem a priori (9.6 Tg N yr−1). We evaluate NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints on soil NOx emissions on all major continents using OMI NO2 columns. Our results rule out the low end of reported soil NOx emission estimates, and suggest that global emissions are most likely around 12.9 ± 3.9 Tg N yr−1.


2014 ◽  
Vol 14 (10) ◽  
pp. 14683-14724
Author(s):  
G. C. M. Vinken ◽  
K. F. Boersma ◽  
J. D. Maasakkers ◽  
M. Adon ◽  
R. V. Martin

Abstract. Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 27 Tg N yr−1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI). We used a state-of-science soil NOx emission inventory (Hudman et al., 2012) as a priori in the GEOS-Chem chemistry transport model to identify 11 regions where tropospheric NO2 columns are dominated by soil NOx emissions. Strong correlations between soil NOx emissions and simulated NO2 columns indicated that spatial patterns in simulated NO2 columns in these regions indeed reflect the underlying soil NOx emissions. Subsequently, we used a mass-balance approach to constrain emissions for these 11 regions on all major continents using OMI observed and GEOS-Chem simulated tropospheric NO2 columns. We found that responses of simulated NO2 columns to changing NOx emissions were suppressed over low NOx regions, and accounted for these non-linearities in our inversion approach. In general, our approach suggests that emissions need to be increased in most regions. Our OMI top-down soil NOx inventory amounts to 10.0 Tg N for 2005 when only constraining the 11 regions, and 12.9 Tg N when extrapolating the constraints globally. Substantial regional differences exist (ranging from −40% to +90%), and globally our top-down inventory is 4–35% higher than the GEOS-Chem a priori (9.6 Tg N yr−1). We evaluated NO2 concentrations simulated with our new OMI top-down inventory against surface NO2 measurements from monitoring stations in Africa, the USA, and Europe. Although this comparison is complicated by several factors, we find an encouraging improved agreement when using the OMI top-down inventory compared to using the a priori inventory. To our knowledge, this study provides, for the first time, specific constraints on soil NOx emissions on all major continents using OMI NO2 columns. Our results rule out the high end of reported soil NOx emission estimates, and suggest that global emissions are most likely around 10–13 Tg N yr−1.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct-sun and zenith-sky. The direct-sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2012 ◽  
Vol 12 (10) ◽  
pp. 4429-4447 ◽  
Author(s):  
S. W. Wang ◽  
Q. Zhang ◽  
D. G. Streets ◽  
K. B. He ◽  
R. V. Martin ◽  
...  

Abstract. Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82) with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.


2016 ◽  
Vol 9 (3) ◽  
pp. 1111-1123 ◽  
Author(s):  
Hyun Cheol Kim ◽  
Pius Lee ◽  
Laura Judd ◽  
Li Pan ◽  
Barry Lefer

Abstract. Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20–30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation coefficient R = 0.89. This study suggests that satellite footprint sizes might have a considerable effect on the measurement of fine-scale urban NO2 plumes. The impact of satellite footprint resolution should be considered when using satellite observations in emission policy making, and the new downscaling approach can provide a reference uncertainty for the use of satellite NO2 measurements over most cities.


2019 ◽  
Vol 19 (16) ◽  
pp. 10619-10642 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct Sun and zenith sky. The direct-Sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the Sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-Sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2011 ◽  
Vol 11 (22) ◽  
pp. 11761-11775 ◽  
Author(s):  
C. J. Lee ◽  
J. R. Brook ◽  
G. J. Evans ◽  
R. V. Martin ◽  
C. Mihele

Abstract. Ozone Monitoring Instrument (OMI) tropospheric NO2 vertical column density data were used in conjunction with in-situ NO2 concentrations collected by permanently installed monitoring stations to infer 24 h surface-level NO2 concentrations at 0.1° (~11 km) resolution. The region examined included rural and suburban areas, and the highly industrialised area of Windsor, Ontario, which is situated directly across the US-Canada border from Detroit, MI. Photolytic NO2 monitors were collocated with standard NO2 monitors to provide qualitative data regarding NOz interference during the campaign. The accuracy of the OMI-inferred concentrations was tested using two-week integrative NO2 measurements collected with passive monitors at 18 locations, approximating a 15 km grid across the region, for 7 consecutive two-week periods. When compared with these passive results, satellite-inferred concentrations showed an 18% positive bias. The correlation of the passive monitor and OMI-inferred concentrations (R=0.69, n=115) was stronger than that for the passive monitor concentrations and OMI column densities (R=0.52), indicating that using a sparse network of monitoring sites to estimate concentrations improves the direct utility of the OMI observations. OMI-inferred concentrations were then calculated for four years to show an overall declining trend in surface NO2 concentrations in the region. Additionally, by separating OMI-inferred surface concentrations by wind direction, clear patterns in emissions and affected down-wind regions, in particular around the US-Canada border, were revealed.


Sign in / Sign up

Export Citation Format

Share Document