scholarly journals The incorporation of an organic soil layer in the Noah-MP Land Surface Model and its evaluation over a Boreal Aspen Forest

2015 ◽  
Vol 15 (20) ◽  
pp. 29265-29302
Author(s):  
L. Chen ◽  
Y. Li ◽  
F. Chen ◽  
A. Barr ◽  
M. Barlage ◽  
...  

Abstract. In this study, the multi-parameterization version of the Noah land-surface model (Noah-MP) was used to investigate the impact of adding a forest-floor organic soil layer on the simulated surface energy and water cycle components at a boreal aspen forest. The test site selected is BERMS Old Aspen Flux (OAS) field station in central Saskatchewan, Canada. The selection of different parameterization schemes for each process within the current Noah-MP model significantly affected the simulation results. The best combination options without incorporating organic soil is referred as the control experiment (CTL). By including an organic-soil parameterization within the Noah-MP model for the first time, the verification results (OGN) against site show significantly improved performance of the model in surface energy fluxes and hydrology simulation due to the lower thermal conductivity and greater porosity of the organic soil. The effects of including an organic soil layer on soil temperature are not uniform throughout the soil depth and year, and those effects are more prominent in summer and in deep soils. For drought years, the OGN simulation substantially modified the partition between direct soil evaporation and vegetation transpiration. For wet years, the OGN simulated latent heat fluxes are similar to CTL except for spring season where OGN produced less evaporation. The impact of the organic soil on sub-surface runoff is substantive with much higher runoff throughout the season.

2016 ◽  
Vol 16 (13) ◽  
pp. 8375-8387 ◽  
Author(s):  
Liang Chen ◽  
Yanping Li ◽  
Fei Chen ◽  
Alan Barr ◽  
Michael Barlage ◽  
...  

Abstract. A thick top layer of organic matter is a dominant feature in boreal forests and can impact land–atmosphere interactions. In this study, the multi-parameterization version of the Noah land surface model (Noah-MP) was used to investigate the impact of incorporating a forest-floor organic soil layer on the simulated surface energy and water cycle components at the BERMS Old Aspen site (OAS) field station in central Saskatchewan, Canada. Compared to a simulation without an organic soil parameterization (CTL), the Noah-MP simulation with an organic soil (OGN) improved Noah-MP-simulated soil temperature profiles and soil moisture at 40–100 cm, especially the phase and amplitude (Seasonal cycle) of soil temperature below 10 cm. OGN also enhanced the simulation of sensible and latent heat fluxes in spring, especially in wet years, which is mostly related to the timing of spring soil thaw and warming. Simulated top-layer soil moisture is better in OGN than that in CTL. The effects of including an organic soil layer on soil temperature are not uniform throughout the soil depth and are more prominent in summer. For drought years, the OGN simulation substantially modified the partitioning of water between direct soil evaporation and vegetation transpiration. For wet years, the OGN-simulated latent heat fluxes are similar to CTL except for the spring season when OGN produced less evaporation, which was closer to observations. Including organic soil produced more subsurface runoff and resulted in much higher runoff throughout the freezing periods in wet years.


2021 ◽  
Author(s):  
Inne Vanderkelen ◽  
Nicole P. M. van Lipzig ◽  
William J. Sacks ◽  
David M. Lawrence ◽  
Martyn Clark ◽  
...  

<p>By now, humans have constructed more than 45 000 large reservoirs across the globe, increasing the global lake area with 8%. These reservoirs have large impacts on freshwater processes and resources by impounding continental runoff and altering river flows. So far, the impact of reservoirs on the climate remains largely unknown, as they are typically not represented in current Earth System Models (ESMs). This is remarkable, as two-way interactions between reservoirs and climate are likely to alter hydrological extremes and impact future water availability.</p><p>Here we present the implementation of the role of reservoirs in the Community Terrestrial Systems Model (CTSM), a land surface model, by accounting for the increase in open water surfaces due to reservoir construction throughout the 20<sup>th</sup> century. To this end, we allow lake area to expand in the model, while ensuring that the surface energy and mass balances remain closed. We use reservoir and lake extent  from the state-of-the-art Global Reservoir and Dams (GRanD) and HydroLAKES data sets.</p><p>By conducting both land-only and coupled simulations with CTSM and the Community Earth System Model (CESM), we assess the added value of accounting for reservoir expansion in the land surface model performance and investigate their impacts on the mean climate and extremes. Globally, the effect of reservoirs on temperatures and the surface energy balance is small, but  responses can be substantial locally, in particular for grid cells where reservoirs make up a large fraction. Our results show that reservoirs reduce temperature extremes and moderate the seasonal temperature cycle, by up to -1.5 K (for reservoirs covering > 15% of the grid cell).</p><p>This study is an important step towards incorporating human water management in ESMs.</p><p> </p>


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2021 ◽  
Author(s):  
Adam Pasik ◽  
Wolfgang Preimesberger ◽  
Bernhard Bauer-Marschallinger ◽  
Wouter Dorigo

<p>Multiple satellite-based global surface soil moisture (SSM) datasets are presently available, these however, address exclusively the top layer of the soil (0-5cm). Meanwhile, root-zone soil moisture cannot be directly quantified with remote sensing but can be estimated from SSM using a land surface model. Alternatively, soil water index (SWI; calculated from SSM as a function of time needed for infiltration) can be used as a simple approximation of root-zone conditions. SWI is a proxy for deeper layers of the soil profile which control evapotranspiration, and is hence especially important for studying hydrological processes over vegetation-covered areas and meteorological modelling.</p><p>Here we introduce the advances in our work on the first operationally capable SWI-based root-zone soil moisture dataset from C3S Soil Moisture v201912 COMBINED product, spanning the period 2002-2020. The uniqueness of this dataset lies in the fact that T-values (temporal lengths ruling the infiltration) characteristic of SWI were translated into particular soil depths making it much more intuitive, user-friendly and easily applicable. Available are volumetric soil moisture values for the top 1 m of the soil profile at 10 cm intervals, where the optimal T-value (T-best) for each soil layer is selected based on a range of correlation metrics with in situ measurements from the International Soil Moisture Network (ISMN) and the relevant soil and climatic parameters.<br>Additionally we present the results of an extensive global validation against in situ measurements (ISMN) as well as the results of investigations into the relationship between a range of soil and climate characteristics and the optimal T-values for particular soil depths.</p>


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


Sign in / Sign up

Export Citation Format

Share Document