scholarly journals Variability of mineral dust deposition in the western Mediterranean basin and South-East of France

2015 ◽  
Vol 15 (23) ◽  
pp. 34673-34717 ◽  
Author(s):  
J. Vincent ◽  
B. Laurent ◽  
R. Losno ◽  
E. Bon Nguyen ◽  
P. Roullet ◽  
...  

Abstract. Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than one year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA ("Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie" in French) have been deployed in the western Mediterranean region during one to three years depending on the station. The sites include, from South to North, Lampedusa Isl., Mallorca Isl., Corsica Isl., Frioul Isl. and Le Casset (South of French Alps). Deposition measurements are performed on a common weekly period at the 5 sites. The mean Saharan dust deposition fluxes are higher close to the North African coasts and decrease following a South to North gradient, with values from 7.4 g m−2 yr−1 in Lampedusa (35°31' N–12°37' E) to 1 g m−2 yr−1 in Le Casset (44°59' N–6°28' E). The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Mallorca with only 2 other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 yr−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 yr−1). From the 537 available samples, ninety eight major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations. Despite the large size of African dust plumes detected by satellites, more than eighty percent of the major dust deposition events are recorded at only one station, suggesting that the dust provenance, transport, and deposition processes (i.e. wet vs. dry) of dust are different and specific for the different deposition sites in the Mediterranean studied area. The results also show that wet deposition is the main way of deposition for mineral dust in the western Mediterranean basin, but the contribution of dry deposition is far to be negligible, and contributes by 15 to 46 % to the major dust deposition events, depending on the sampling site.

2016 ◽  
Vol 16 (14) ◽  
pp. 8749-8766 ◽  
Author(s):  
Julie Vincent ◽  
Benoit Laurent ◽  
Rémi Losno ◽  
Elisabeth Bon Nguyen ◽  
Pierre Roullet ◽  
...  

Abstract. Previous studies have provided some insight into the Saharan dust deposition at a few specific locations from observations over long time periods or intensive field campaigns. However, no assessment of the dust deposition temporal variability in connection with its regional spatial distribution has been achieved so far from network observations over more than 1 year. To investigate dust deposition dynamics at the regional scale, five automatic deposition collectors named CARAGA (Collecteur Automatique de Retombées Atmosphériques insolubles à Grande Autonomie in French) have been deployed in the western Mediterranean region during 1 to 3 years depending on the station. The sites include, from south to north, Lampedusa, Majorca, Corsica, Frioul and Le Casset (southern French Alps). Deposition measurements are performed on a common weekly period at the five sites. The mean dust deposition fluxes are higher close to the northern African coasts and decrease following a south–north gradient, with values from 7.4 g m−2 year−1 in Lampedusa (35°31′ N, 12°37′ E) to 1 g m−2 year−1 in Le Casset (44°59′ N, 6°28′ E). The maximum deposition flux recorded is of 3.2 g m−2 wk−1 in Majorca with only two other events showing more than 1 g m−2 wk−1 in Lampedusa, and a maximum of 0.5 g m−2 wk−1 in Corsica. The maximum value of 2.1 g m−2 year−1 observed in Corsica in 2013 is much lower than existing records in the area over the 3 previous decades (11–14 g m−2 year−1). From the 537 available samples, 98 major Saharan dust deposition events have been identified in the records between 2011 and 2013. Complementary observations provided by both satellite and air mass trajectories are used to identify the dust provenance areas and the transport pathways from the Sahara to the stations for the studied period. Despite the large size of African dust plumes detected by satellites, more than 80 % of the major dust deposition events are recorded at only one station, suggesting that the dust provenance, transport and deposition processes (i.e. wet vs. dry) of dust are different and specific for the different deposition sites in the Mediterranean studied area. The results tend to indicate that wet deposition is the main form of deposition for mineral dust in the western Mediterranean basin, but the contribution of dry deposition (in the sense that no precipitation was detected at the surface) is far from being negligible, and contributes 10 to 46 % to the major dust deposition events, depending on the sampling site.


2017 ◽  
Author(s):  
Yinghe Fu ◽  
Karine Desboeufs ◽  
Julie Vincent ◽  
Elisabeth Bon Nguyen ◽  
Benoit Laurent ◽  
...  

Abstract. In order to measure the mass flux of atmospheric insoluble deposition and to constrain regional models dust simulation, a network of automatic deposition collectors (CARAGA) has been installed throughout the western Mediterranean basin. Weekly samples of the insoluble fraction of total atmospheric deposition were collected concurrently on filters at 5 sites including 4 on western Mediterranean islands (Frioul and Corsica, France, Mallorca, Spain, and Lampedusa, Italy), and 1 in the southern French Alps (Le Casset), and a weighing and ignition protocol was applied in order to quantify their mineral fraction. Atmospheric deposition is both a strong source of nutrients and metals for marine ecosystems in this area. However, there is little data on trace metal deposition in the literature since their deposition measurement is difficult to perform. In order to obtain more information from CARAGA atmospheric deposition samples, this study aimed at testing their relevance to estimate elemental fluxes in addition to total fluxes. The elemental chemical analysis of ashed CARAGA filter samples was based on an acid digestion and an elemental analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectrometry (MS) in a clean room. The sampling and analytical protocols were tested to determine the elemental composition for mineral dust tracers (Al, Ca, K, Mg, and Ti), nutrients (P and Fe), and trace metals (Cd, Co, Cr, Cu, Mn, Ni, V and Zn) from simulated wet deposition of dust analogues and traffic soot. The relative mass loss by dissolution in wet deposition was lower than 1 % for Al and Fe, and reached 13 % for P due to its larger solubility in water. For trace metals, this loss represented less than 3 % of the total mass concentration, except for Zn, Cu and Mn for which it could reach 10 %, especially in traffic soot. The chemical contamination during analysis was negligible for all the elements except for Cd which is in very low concentration in dust. Tests allowed us to conclude that the CARAGA samples could be used to estimate contents of nutrients and trace metals in the limits of loss by dissolution. Chemical characterization of CARAGA deposition samples corresponding to the most intense dust deposition events recorded between 2011 and 2013 has been performed and showed elemental mass ratios consistent with the ones found in the literature for Saharan dust. However, the chemical analysis of CARAGA samples revealed the presence of some anthropogenic signatures, as for instance high Zn concentrations in some samples in Lampedusa, and also pointed out that mineral dust can be mixed with anthropogenic compounds in the deposition samples collected on the Frioul Island. Results showed that the chemical analysis of CARAGA ashed samples can be used to trace back origins of elemental deposition. The elemental atmospheric fluxes estimated from these chemical analyses of samples from the CARAGA network of weekly deposition monitoring constitute the first assessment of mass deposition fluxes of trace metals and P during intense dust deposition events at the scale of the western Mediterranean basin.


2015 ◽  
Vol 8 (3) ◽  
pp. 2299-2329
Author(s):  
B. Laurent ◽  
R. Losno ◽  
S. Chevaillier ◽  
J. Vincent ◽  
P. Roullet ◽  
...  

Abstract. Deposition is one of the key processes controlling the mass budget of the atmospheric mineral dust concentration. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims at presenting an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programed sampling time step (1 day and 2 weeks sampling time steps, respectively). This collector is used to sample atmospheric deposition on Frioul Island which is located in the Gulf of Lions in the Western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Two years of continuous deposition measurements performed on a weekly time step sampling on Frioul Island are presented and discussed with in-situ measurements, air mass trajectories and satellite observations of dust.


2020 ◽  
Author(s):  
Jesús Yus-Díez ◽  
Marina Ealo ◽  
Marco Pandolfi ◽  
Noemí Perez ◽  
Gloria Titos ◽  
...  

Abstract. Accurate measurements of the horizontal and vertical distribution of atmospheric aerosol particle optical properties are key for a better understanding of their impact on the climate. Here we present the results of a measurement campaign based on instrumented flights over NE Spain. We measured vertical profiles of size segregated atmospheric particulate matter (PM) mass concentrations and multi-wavelength scattering and absorption coefficients in the Western Mediterranean Basin (WMB). The campaign took place during typical summer conditions, characterized by the development of a vertical multi-layer structure, under both summer regional pollution episodes (REG) and Saharan dust events (SDE). REG patterns in the region form under high insolation and scarce precipitation in summer, favoring layering of highly-aged fine PM strata in the lower few km a.s.l. The REG scenario prevailed during the entire measurement campaign. Additionally, African dust outbreaks and plumes from North African wildfires influenced the study area. The vertical profiles of climate relevant intensive optical parameters such as single scattering albedo (SSA), asymmetry parameter (g), scattering, absorption and SSA Angstrom exponents (SAE, AAE, SSAAE), and PM mas scattering and absorption cross sections (MSC and MAE) were derived from the measurements. Moreover, we compared the aircraft measurements with those performed at two GAW/ACTRIS surface measurement stations located in NE Spain, namely: Montseny (MSY; regional background) and Montsec d'Ares (MSA; remote site). Airborne in-situ measurements and ceilometer ground-based remote measurements identified aerosol air masses at altitude up to more than 3.5 km a.s.l. The vertical profiles of the optical properties markedly changed according to the prevailing atmospheric scenarios. During SDE the SAE was low along the profiles, reaching values  2.0 and the asymmetry parameter g was rather low (0.5–0.6) due to the prevalence of fine PM which were characterized by an AAE close to 1.0 suggesting a fossil fuel combustion origin. During REG, some of the layers featured larger AAE (> 1.5), relatively low SSA at 525 nm ( 9 m2 g−1) and were associated to the influence of PM from wildfires. Overall, the SSA and MSC near the ground ranged around 0.85 and 3 m2 g−1, respectively and increased at higher altitudes, reaching values above 0.95 and up to 9 m2 g−1. The PM, MSC and MAE were on average larger during REG compared to SDE due to the larger scattering and absorption efficiency of fine PM compared with dust. The SSA and MSC had quite similar vertical profiles and often both increased with height indicating the progressive shift toward PM with larger scattering efficiency with altitude. This study contributes to our understanding of regional aerosol vertical distribution and optical properties in the WMB and the results will be useful for improving future climate projections and remote sensing/satellite retrieval algorithms.


2015 ◽  
Vol 15 (15) ◽  
pp. 21607-21669 ◽  
Author(s):  
C. Denjean ◽  
F. Cassola ◽  
A. Mazzino ◽  
S. Triquet ◽  
S. Chevaillier ◽  
...  

Abstract. This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of tranport (1–5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried higher concentration of pollution particles at intermediate altitude (1–3 km) than at elevated altitude (> 3 km), resulting in scattering Angstrom exponent up to 2.2 within the intermediate altitude. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate light absorption of the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00 ± 0.04. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assimilated to those of native dust in radiative transfer simulations, modeling studies and satellite retrievals over the Mediterranean. Measurements also showed that the coarse mode of mineral dust was conserved even after 5 days of transport in the Mediterranean, which contrasts with the gravitational depletion of large particles observed during the transport of dust plumes over the Atlantic. Simulations with the WRF mesoscale meteorological model highlighted a strong vertical turbulence within the dust layers that could prevent deposition of large particles during their atmospheric transport. This has important implications for the dust radiative effects due to surface dimming, atmospheric heating and cloud formation. The results presented here add to the observational dataset necessary for evaluating the role of mineral dust on the regional climate and rainfall patterns in the western Mediterranean basin.


2015 ◽  
Vol 8 (7) ◽  
pp. 2801-2811 ◽  
Author(s):  
B. Laurent ◽  
R. Losno ◽  
S. Chevaillier ◽  
J. Vincent ◽  
P. Roullet ◽  
...  

Abstract. Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m−2 for February to December 2011 and 3.16 g m−2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.


2021 ◽  
Vol 21 (1) ◽  
pp. 431-455
Author(s):  
Jesús Yus-Díez ◽  
Marina Ealo ◽  
Marco Pandolfi ◽  
Noemí Perez ◽  
Gloria Titos ◽  
...  

Abstract. Accurate measurements of the horizontal and vertical distribution of atmospheric aerosol particle optical properties are key for a better understanding of their impact on the climate. Here we present the results of a measurement campaign based on instrumented flights over north-eastern Spain. We measured vertical profiles of size-segregated atmospheric particulate matter (PM) mass concentrations and multi-wavelength scattering and absorption coefficients in the western Mediterranean basin (WMB). The campaign took place during typical summer conditions, characterized by the development of a vertical multi-layer structure, under both summer regional pollution episodes (REGs) and Saharan dust events (SDEs). REG patterns in the region form under high insolation and scarce precipitation in summer, favouring layering of highly aged fine-PM strata in the lower few kma.s.l. The REG scenario prevailed during the entire measurement campaign. Additionally, African dust outbreaks and plumes from northern African wildfires influenced the study area. The vertical profiles of climate-relevant intensive optical parameters such as single-scattering albedo (SSA); the asymmetry parameter (g); scattering, absorption and SSA Ångström exponents (SAE, AAE and SSAAE); and PM mass scattering and absorption cross sections (MSC and MAC) were derived from the measurements. Moreover, we compared the aircraft measurements with those performed at two GAW–ACTRIS (Global Atmosphere Watch–Aerosol, Clouds and Trace Gases) surface measurement stations located in north-eastern Spain, namely Montseny (MSY; regional background) and Montsec d'Ares (MSA; remote site). Airborne in situ measurements and ceilometer ground-based remote measurements identified aerosol air masses at altitudes up to more than 3.5 kma.s.l. The vertical profiles of the optical properties markedly changed according to the prevailing atmospheric scenarios. During SDE the SAE was low along the profiles, reaching values < 1.0 in the dust layers. Correspondingly, SSAAE was negative, and AAE reached values up to 2.0–2.5, as a consequence of the UV absorption increased by the presence of the coarse dust particles. During REG, the SAE increased to > 2.0, and the asymmetry parameter g was rather low (0.5–0.6) due to the prevalence of fine PM, which was characterized by an AAE close to 1.0, suggesting a fossil fuel combustion origin. During REG, some of the layers featured larger AAE (> 1.5), relatively low SSA at 525 nm (< 0.85) and high MSC (> 9 m2 g−1) and were associated with the influence of PM from wildfires. Overall, the SSA and MSC near the ground ranged around 0.85 and 3 m2 g−1, respectively, and increased at higher altitudes, reaching values above 0.95 and up to 9 m2 g−1. The PM, MSC and MAC were on average larger during REG compared to SDE due to the larger scattering and absorption efficiency of fine PM compared with dust. The SSA and MSC had quite similar vertical profiles and often both increased with height indicating the progressive shift toward PM with a larger scattering efficiency with altitude. This study contributes to our understanding of regional-aerosol vertical distribution and optical properties in the WMB, and the results will be useful for improving future climate projections and remote sensing or satellite retrieval algorithms.


2015 ◽  
Vol 15 (6) ◽  
pp. 8283-8328 ◽  
Author(s):  
C. Di Biagio ◽  
L. Doppler ◽  
C. Gaimoz ◽  
N. Grand ◽  
G. Ancellet ◽  
...  

Abstract. In this study we present airborne observations of aerosol and trace gases obtained over the sea in the Western Mediterranean Basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summers 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m a.s.l. over an extended area (40–45° N latitude and 2° W–12° E longitude) including the Gulf of Genoa, Southern France, the Gulf of Lion, and the Spanish coast. TRAQA and SAFMED successfully measured a wide range of meteorological conditions which favoured the pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study indicate that continental pollution largely affects the Western Mediterranean both close to coastal regions and in the open sea as far as ~250 km from the coastline. Aerosol layers not specifically linked with Saharan dust outflows are distributed ubiquitously which indicates quite elevated levels of background pollution throughout the Western Basin. The measured aerosol scattering coefficient varies between ~20 and 120 M m−1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60–170 and 30–85 ppbv, respectively. Pollution reaches 3000–4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004–0.1 μm) and accumulation (0.1–1.0 μm) modes is between $\\sim 100$ and 5000–6000 s cm−3 (standard cm−3), which is comparable to the aerosol concentration measured in continental urban areas. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000–15 000 s cm−3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new particle formation (NPF) episodes over the basin.


Sign in / Sign up

Export Citation Format

Share Document