scholarly journals Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

2006 ◽  
Vol 6 (6) ◽  
pp. 11465-11520 ◽  
Author(s):  
B. Sauvage ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
X. Liu ◽  
K. Chance ◽  
...  

Abstract. We use a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flash counts improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 5±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils) and VOCs (biomass burning). The top-down biomass burning inventory is larger by a factor of 2 for HCHO and alkenes, and by 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4) is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv due to enhanced convective detrainment in the upper troposphere. Heterogeneous uptake of HNO3 on aerosols reduces simulated O3 by 5–7 ppbv, reducing a model bias versus in situ observations over and downwind of deserts. Exclusion of HO2 uptake on aerosols improves O3 by 5 ppbv in biomass burning regions.

2007 ◽  
Vol 7 (3) ◽  
pp. 815-838 ◽  
Author(s):  
B. Sauvage ◽  
R. V. Martin ◽  
A. van Donkelaar ◽  
X. Liu ◽  
K. Chance ◽  
...  

Abstract. We use a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NOx and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 6±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils) and VOCs (biomass burning). The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4) is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv, reflecting enhanced convective detrainment in the upper troposphere. Heterogeneous uptake of HNO3 on aerosols reduces simulated O3 by 5–7 ppbv, reducing a model bias versus in situ observations over and downwind of deserts. Exclusion of HO2 uptake on aerosols increases O3 by 5 ppbv in biomass burning regions, reducing a model bias versus MOZAIC aircraft measurements.


2020 ◽  
Author(s):  
Martin Cussac ◽  
Virginie Marécal ◽  
Valérie Thouret ◽  
Béatrice Josse

<p>The UTLS (Upper Troposphere/Lower Stratosphere) is a key layer of the atmosphere as its chemical composition impacts both the troposphere and the stratosphere, and therefore plays a significant role in the climate system. Ozone at this altitude for instance plays a great role on surface temperature. Unlike in the stratosphere; it can be produced from the photolysis of precursors originating in the troposphere; mainly nitrous oxides (NO<sub>x</sub>) and carbon monoxide (CO) at this pressure range. Biomass burning emissions in particular are likely to play a significant role in the quantities of these species in the upper troposphere and thus impacting ozone balance. This effect is investigated thanks to the global chemistry transport model MOCAGE. Because of the strong vertical gradients in this layer of the atmosphere, well resolved in-situ observation dataset are valuable for model evaluation. As of measurements used to validate MOCAGE results, IAGOS in-situ measurements from equipped commercial aircraft were chosen for their fine vertical resolution as well as their wide geographical coverage. Using both of these tools, upper tropospheric air composition is studied, with a focus on ozone precursors and production linked to biomass burning emissions.</p><p>Firstly is investigated the direct impact of biomass burning emissions on CO concentration in the upper troposphere, as it is both a good tracer of wildfire plumes in the atmosphere and it plays a role in the upper troposphere chemical balance. For this purpose MOCAGE simulations spaning over the year of 2013 where biomass burning emissions were turned on and off are compared to estimate a contribution to upper tropospheric CO. These simulations were validated using all the available data from the IAGOS database. It was found that biomass burning impacted CO levels globally, with the strongest enhancement happening above the most emitting areas (equatorial Africa and the Boreal forests). The importance of a fast vertical transport pathway above the fires was also highlighted with the possible occurrence of pyroconvection in addition to deep convection. Secondly, other chemical species related to ozone production were looked upon. Peroxyacetyl Nitrates (PAN) for instance were found to be impacted by biomass burning as it is a product of NOx oxidation as well as the main "reservoir" specie for NOx in the upper troposphere. Ultimately, ozone production resulting from biomass burning emissions is investigated, both in biomass burning plumes encountered by IAGOS aircraft, and on a more global scale using the MOCAGE simulations.</p>


2008 ◽  
Vol 8 (1) ◽  
pp. 1505-1548 ◽  
Author(s):  
K. W. Bowman ◽  
D. Jones ◽  
J. Logan ◽  
H. Worden ◽  
F. Boersma ◽  
...  

Abstract. The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so-called zonal "wave-one" pattern, which is characterized by peak ozone concentrations (70–80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60–70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.


Author(s):  
Kuo-Ying Wang

In this work, we examined the effect of tropospheric emissions on tropospheric ozone (O3) by conducting three-dimensional (3D) chemistry transport model (CTM) simulations. For the control run, the CTM model simulates tropospheric O3 levels with a complete set of anthropogenic, biomass burning, and vegetation emissions [8]. For the no-emission simulation, all anthropogenic, biomass burning, and vegetation emissions were turned off. Comparisons of results from these two simulations exhibit the emission impacts on the tropospheric O3. In the no-emission simulation, distinctive low surface O3 with concentrations less than 5 ppbv prevail over the Amazon basin, tropical South America, tropical South Africa, Southeast Asia. Transport of air from these land areas downwind contributes to the low O3 over the remote marine boundary layer. In contrast, elevated O3 levels over the extra-tropical remote marine boundary layer are less supported by the anthropogenic and biomass burning emissions but more sustained by the downward transport of O3 from the stratosphere. These results demonstrate that the northern hemisphere continental areas (north of 30◦N ), polar regions, and tropical continental regions are more sensitive to the tropospheric emissions. The northern hemisphere winter is mostly dominated by the stratospheric processes, while the tropospheric emissions dominate over the southern hemisphere tropical continental areas from tropics to 30◦S latitudinal bands. The northern hemisphere continental regions are increasingly dominated by tropospheric emissions from spring, to reach maxima in summer, and started to reduce in autumn months.


2011 ◽  
Vol 11 (24) ◽  
pp. 13395-13419 ◽  
Author(s):  
I. Bouarar ◽  
K. S. Law ◽  
M. Pham ◽  
C. Liousse ◽  
H. Schlager ◽  
...  

Abstract. A global chemistry-climate model LMDz_INCA is used to investigate the contribution of African and Asian emissions to tropospheric ozone over Central and West Africa during the summer monsoon. The model results show that ozone in this region is most sensitive to lightning NOx and to Central African biomass burning emissions. However, other emission categories also contribute significantly to regional ozone. The maximum ozone changes due to lightning NOx occur in the upper troposphere between 400 hPa and 200 hPa over West Africa and downwind over the Atlantic Ocean. Biomass burning emissions mainly influence ozone in the lower and middle troposphere over Central Africa, and downwind due to westward transport. Biogenic emissions of volatile organic compounds, which can be uplifted from the lower troposphere to higher altitudes by the deep convection that occurs over West Africa during the monsoon season, lead to maximum ozone changes in the lower stratosphere region. Soil NOx emissions over the Sahel region make a significant contribution to ozone in the lower troposphere. In addition, convective uplift of these emissions and subsequent ozone production are also an important source of ozone in the upper troposphere over West Africa. Concerning African anthropogenic emissions, they only make a small contribution to ozone compared to the other emission categories. The model results indicate that most ozone changes due to African emissions occur downwind, especially over the Atlantic Ocean, far from the emission regions. The import of Asian emissions also makes a considerable contribution to ozone concentrations above 150 hPa and has to be taken into account in studies of the ozone budget over Africa. Using IPCC AR5 (Intergovernmental Panel on Climate Change; Fifth Assessment Report) estimates of anthropogenic emissions for 2030 over Africa and Asia, model calculations show larger changes in ozone over Africa due to growth in Asian emissions compared to African emissions over the next 20 yr.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2016 ◽  
Author(s):  
Gerard Ancellet ◽  
Nikos Daskalakis ◽  
Jean Christophe Raut ◽  
Boris Quennehen ◽  
François Ravetta ◽  
...  

Abstract. The goal of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55° N during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6–15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0–4 km and 4–8 km. For Canada, the model CO distribution and the weak correlation (< 30 %) of O3 and PV suggests that stratosphere-troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70° N, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation (> 40 %) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient −6 to −8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65° N, while STE contribution is more homogeneous in the latitude range 55° N to 70° N. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77° N).


2004 ◽  
Vol 4 (3) ◽  
pp. 3285-3332 ◽  
Author(s):  
B. Sauvage ◽  
V. Thouret ◽  
J.-P. Cammas ◽  
F. Gheusi ◽  
G. Athier ◽  
...  

Abstract. We analyze MOZAIC ozone observations recorded over Equatorial Africa, from April 1997 to March 2003 to give the first ozone climatology of this region. The monthly mean vertical profiles have been systematically analyzed with monthly mean ECMWF data using a Lagrangian-model (LAGRANTO). We assess the roles played by the dynamical features of Equatorial Africa and the intense biomass burning sources within the region in defining the ozone distribution. The lower troposphere exhibits layers of enhanced ozone during the biomass burning season in each hemisphere (boreal winter in the northern tropics and boreal summer in the southern tropics). The monthly mean vertical profiles of ozone are clearly influenced by the local dynamical situation. Over the Gulf of Guinea during boreal winter, the ozone profile is characterized by systematically high ozone below 650 hPa. This is due to the high stability caused by the Harmattan winds in the lower troposphere and the blocking Saharan anticyclone in the middle troposphere that prevents any efficient vertical mixing. In contrast, Central African enhancements are not only found in the lower troposphere but throughout the troposphere. The boreal summer ozone maximum in the lower troposphere of Central Africa continues up to November in the middle troposphere due to the influx of air masses laden with biomass burning products from Brazil and Southern Africa. Despite its southern latitude, Central Africa during the boreal winter is also under the influence of the northern tropical fires. This phenomenon is known as the "ozone paradox". However, the tropospheric ozone columns calculated from the MOZAIC data give evidence that the Tropical Tropospheric Ozone Column (TTOC) maximum over Africa swings from West Africa in DJF to Central Africa in JJA. This contrasts with studies based on TOMS satellite data. A rough assessment of the regional ozone budget shows that the northern tropics fires in boreal winter might contribute up to 20% of the global photochemical ozone production. This study gives the first detailed picture of the ozone distribution over Equatorial Africa that should be used to validate both global models over this region and future satellite products.


2017 ◽  
Author(s):  
Ling Qi ◽  
Qinbin Li ◽  
Daven K. Henze ◽  
Hsien-Liang Tseng ◽  
Cenlin He

Abstract. We quantify source contributions to springtime (April 2008) surface black carbon (BC) in the Arctic by interpreting surface observations of BC at five receptor sites (Denali, Barrow, Alert, Zeppelin, and Summit) using a global chemical transport model (GEOS-Chem) and its adjoint. Contributions to BC at Barrow, Alert, and Zeppelin are dominated by Asian anthropogenic sources (40–43 %) before April 18 and by Siberian open biomass burning emissions (29–41 %) afterward. In contrast, Summit, a mostly free tropospheric site, has predominantly an Asian anthropogenic source contribution (24–68 %, with an average of 45 %). We compute the adjoint sensitivity of BC concentrations at the five sites during a pollution episode (April 20–25) to global emissions from March 1 to April 25. The associated contributions are the combined results of these sensitivities and BC emissions. Local and regional anthropogenic sources in Alaska are the largest anthropogenic sources of BC at Denali (63 %), and natural gas flaring emissions in the Western Extreme North of Russia (WENR) are the largest anthropogenic sources of BC at Zeppelin (26 %) and Alert (13 %). We find that long-range transport of emissions from Beijing-Tianjin-Hebei (also known as Jing-Jin-Ji), the biggest urbanized region in Northern China, contribute significantly (~ 10 %) to surface BC across the Arctic. On average it takes ~ 12 days for Asian anthropogenic emissions and Siberian biomass burning emissions to reach Arctic lower troposphere, supporting earlier studies. Natural gas flaring emissions from the WENR reach Zeppelin in about a week. We find that episodic, direct transport events dominate BC at Denali (87 %), a site outside the Arctic front, a strong transport barrier. The relative contribution of direct transport to surface BC within the Arctic front is much smaller (~ 50 % at Barrow and Zeppelin and ~ 10 % at Alert). The large contributions from Asian anthropogenic sources are predominately in the form of ‘chronic’ pollution (~ 40 % at Barrow and 65 % at Alert and 57 % at Zeppelin) on 1–2 month timescales. As such, it is likely that previous studies using 5- or 10-day trajectory analyses strongly underestimated the contribution from Asia to surface BC in the Arctic. Both finer temporal resolution of biomass burning emissions and accounting for the Wegener-Bergeron-Findeisen (WBF) process in wet scavenging improve the source attribution estimates.


Sign in / Sign up

Export Citation Format

Share Document