scholarly journals Insights into the role of soot aerosols in cirrus cloud formation

2007 ◽  
Vol 7 (3) ◽  
pp. 7843-7905 ◽  
Author(s):  
B. Kärcher ◽  
O. Möhler ◽  
P. J. DeMott ◽  
S. Pechtl ◽  
F. Yu

Abstract. Cirrus cloud formation is believed to be domi\\-nated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui\\-tous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

2007 ◽  
Vol 7 (16) ◽  
pp. 4203-4227 ◽  
Author(s):  
B. Kärcher ◽  
O. Möhler ◽  
P. J. DeMott ◽  
S. Pechtl ◽  
F. Yu

Abstract. Cirrus cloud formation is believed to be dominated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiquitous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. Both scenarios assume soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


2013 ◽  
Author(s):  
Karl D. Froyd ◽  
Daniel J. Cziczo ◽  
Corinna Hoose ◽  
Eric J. Jensen ◽  
Minghui Diao ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 15665-15698 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%.


2009 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. Barahona ◽  
A. Nenes

Abstract. We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.


2011 ◽  
Vol 11 (6) ◽  
pp. 17201-17243 ◽  
Author(s):  
C. R. Hoyle ◽  
V. Pinti ◽  
A. Welti ◽  
B. Zobrist ◽  
C. Marcolli ◽  
...  

Abstract. The ice nucleation ability of volcanic ash particles collected close to the Icelandic volcano Eyjafjallajökull during its eruptions in April and May 2010 is investigated experimentally, in the immersion and deposition modes, and applied to atmospheric conditions by comparison with airborne measurements and microphysical model calculations. The number of ash particles which are active as ice nuclei (IN) is strongly temperature dependent, with a very small minority being active in the immersion mode at temperatures of 250–263 K. Average ash particles show only a moderate effect on ice nucleation, by inducing freezing at temperatures between 236 K and 240 K (i.e. approximately 3–4 K higher than temperatures required for homogeneous ice nucleation, measured with the same instrument). By scaling the results to aircraft and lidar measurements of the conditions in the ash plume days down wind of the eruption and by applying a simple microphysical model, it was found that the IN active in the immersion mode in the range 250–263 K generally occurred in atmospheric number densities at the lower end of those required to have an impact on ice cloud formation. However, 3–4 K above the homogeneous freezing point, immersion mode IN number densities a few days down wind of the eruption were sufficiently high to have a moderate influence on ice cloud formation. The efficiency of IN in the deposition mode was found to be poor except at very cold conditions (< 238 K), when they reach an efficiency similar to that of mineral dust with the onset of freezing at 10 % supersaturation with respect to ice, and with the frozen fraction nearing its maximum value at a supersaturation 20 %. In summary, these investigations suggest volcanic ash particles to have only moderate effects on atmospheric ice formation.


2011 ◽  
Vol 11 (18) ◽  
pp. 9911-9926 ◽  
Author(s):  
C. R. Hoyle ◽  
V. Pinti ◽  
A. Welti ◽  
B. Zobrist ◽  
C. Marcolli ◽  
...  

Abstract. The ice nucleation ability of volcanic ash particles collected close to the Icelandic volcano Eyjafjallajökull during its eruptions in April and May 2010 is investigated experimentally, in the immersion and deposition modes, and applied to atmospheric conditions by comparison with airborne measurements and microphysical model calculations. The number of ash particles which are active as ice nuclei (IN) is strongly temperature dependent, with a very small minority being active in the immersion mode at temperatures of 250–263 K. Average ash particles show only a moderate effect on ice nucleation, by inducing freezing at temperatures between 236 K and 240 K (i.e. approximately 3–4 K higher than temperatures required for homogeneous ice nucleation, measured with the same instrument). By scaling the results to aircraft and lidar measurements of the conditions in the ash plume days down wind of the eruption, and by applying a simple microphysical model, it was found that the IN active in the immersion mode in the range 250–263 K generally occurred in atmospheric number densities at the lower end of those required to have an impact on ice cloud formation. However, 3–4 K above the homogeneous freezing point, immersion mode IN number densities a few days down wind of the eruption were sufficiently high to have a moderate influence on ice cloud formation. The efficiency of IN in the deposition mode was found to be poor except at very cold conditions (<238 K), when they reach an efficiency similar to that of mineral dust with the onset of freezing at 10 % supersaturation with respect to ice, and with the frozen fraction nearing its maximum value at a supersaturation 20 %. In summary, these investigations suggest volcanic ash particles to have only moderate effects on atmospheric ice formation.


2010 ◽  
Vol 10 (12) ◽  
pp. 5449-5474 ◽  
Author(s):  
M. Wang ◽  
J. E. Penner

Abstract. A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.


2003 ◽  
Vol 3 (2) ◽  
pp. 1415-1451 ◽  
Author(s):  
B. Kärcher ◽  
J. Ström

Abstract. The probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (~52–55° N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1–10 cm−3) of small (diameter <20 μm) ice crystals. This mode dominates the probability distributions in both hemispheres and is shown to be caused by rapid cooling rates associated with updraft speeds in the range 10–100 cm s-1. A second mode containing larger crystals extends from ~1 cm−3 to low concentrations close to the detection threshold (~3×104cm−3) and is associated with lower updraft speeds. Results of a statistical analysis provide compelling evidence that the dynamical variability of vertical air motions on the mesoscale is the key factor determining the observed probability distributions of pristine ice crystal concentrations in cirrus. Other factors considered are variations of temperature as well as size, number, and ice nucleation thresholds of the freezing aerosol particles. The variability in vertical velocities is likely caused by atmospheric waves. Inasmuch as gravity waves are widespread, mesoscale variability in vertical velocities can be viewed as a universa  feature of young cirrus clouds. Large-scale models that do not account for this subgrid-scale variability yield erroneous predictions of the variability of basic cirrus cloud properties. Climate change may bring about changes in the global distribution of updraft speeds, mean air temperatures, and aerosol properties. As shown in this work, these changes could significantly modify the probability distribution of cirrus ice crystal concentrations. This study emphasizes the key role of vertical velocities and mesoscale variability in vertical velocities in controlling cirrus properties. The results suggest that, in any effort to ascribe cause to trends of cirrus cloud properties, a careful evaluation of dynamical changes in cloud formation should be done before conclusions regarding the role of other anthropogenic factors, such as changes in aerosol composition, are made.


Author(s):  
Henrik Svensmark ◽  
Jens Olaf P Pedersen ◽  
Nigel D Marsh ◽  
Martin B Enghoff ◽  
Ulrik I Uggerhøj

Experimental studies of aerosol nucleation in air, containing trace amounts of ozone, sulphur dioxide and water vapour at concentrations relevant for the Earth's atmosphere, are reported. The production of new aerosol particles is found to be proportional to the negative ion density and yields nucleation rates of the order of 0.1–1 cm −3  s −1 . This suggests that the ions are active in generating an atmospheric reservoir of small thermodynamically stable clusters, which are important for nucleation processes in the atmosphere and ultimately for cloud formation.


Sign in / Sign up

Export Citation Format

Share Document