scholarly journals Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area

2008 ◽  
Vol 8 (6) ◽  
pp. 19605-19635 ◽  
Author(s):  
W. Lei ◽  
M. Zavala ◽  
B. de Foy ◽  
R. Volkamer ◽  
M. J. Molina ◽  
...  

Abstract. Formaldehyde (HCHO) is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA) is characterized by high anthropogenic emissions of HCHO (primary HCHO), which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO), lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3) formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only contributing significantly to the ambient HCHO concentration, but also enhancing the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early morning, culminates at mid-morning and is sustained until early afternoon.

2009 ◽  
Vol 9 (7) ◽  
pp. 2607-2618 ◽  
Author(s):  
W. Lei ◽  
M. Zavala ◽  
B. de Foy ◽  
R. Volkamer ◽  
M. J. Molina ◽  
...  

Abstract. Formaldehyde (HCHO) is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA) is characterized by high anthropogenic emissions of HCHO (primary HCHO), which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO), lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3) formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only to contribute significantly to the ambient HCHO concentration, but also to enhance the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%; moreover primary HCHO tends to make O3 both production rates and ambient concentration peak half an hour earlier. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early in the morning, peaks at mid-morning and is sustained until early afternoon.


2010 ◽  
Vol 10 (2) ◽  
pp. 525-546 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
L. Molina ◽  
...  

Abstract. New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modelling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with the older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April 2003 during a period of very low regional biomass burning impact. The emission inventory, which uses as a starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City, reaching values above 40 μg m−3. The model predictions are compared with the results of the Positive Matrix Factorization (PMF) analysis of the Aerosol Mass Spectrometry (AMS) observations. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush-hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols, respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary and secondary organic aerosol production rates may lead to similar results. The model results strongly suggest that, during the simulated period, transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.


2008 ◽  
Vol 8 (14) ◽  
pp. 4061-4068 ◽  
Author(s):  
D. Cariolle ◽  
M. J. Evans ◽  
M. P. Chipperfield ◽  
N. Butkovskaya ◽  
A. Kukui ◽  
...  

Abstract. We have studied the impact of the recently observed reaction NO+HO2→HNO3 on atmospheric chemistry. A pressure and temperature-dependent parameterisation of this minor channel of the NO+HO2→NO2+OH reaction has been included in both a 2-D stratosphere-troposphere model and a 3-D tropospheric chemical transport model (CTM). Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT). Including the reaction leads to a reduction in NOx everywhere in the troposphere, with the largest decrease of 25% in the tropical and Southern Hemisphere UT. The tropical UT also has a corresponding large increase in HNO3 of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. The mean global decrease in OH is around 13%, which is very large compared to the impact that typical photochemical revisions have on this modelled quantity. This OH decrease leads to an increase in CH4 lifetime of 5%. Due to the impact of decreased NOx on the OH:HO2 partitioning, modelled HO2 actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and Southern Hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 374
Author(s):  
Nikolai Ponomarev ◽  
Vladislav Yushkov ◽  
Nikolai Elansky

Comparisons of observational data obtained at the Moscow Ecological Monitoring network (MEM) with numerical simulations using a chemical transformation and transport model (SILAM—System for Integrated modeLling of Atmospheric coMposition) showed that the errors in determining the gaseous pollutant concentrations in the urban atmosphere have a more complex structure than those assumed under the conventional algorithms of data assimilation. These errors are statistically nonstationary; they show a pronounced diurnal cycle and a significant lifetime. The statistical features of errors in numerical calculations also depend upon the type of pollutants, i.e., the chemical reactions in which they participate. Our analysis showed that the simulation errors are not small: the ratios of calculated and measured concentrations (even for daily averages at all measuring stations) may vary in a wide range. For the chemically active pollutants, the intradiurnal error variations may reach 100%. The diurnal cycle of such errors was found to vary according to seasons (in our case, summer and winter). The analysis of statistical properties of the errors, including their temporal and spatial variability, allows one to correct and adequately forecast the air pollution in the metropolis area at lead times up to three days in advance.


2008 ◽  
Vol 8 (1) ◽  
pp. 2695-2713 ◽  
Author(s):  
D. Cariolle ◽  
M. J. Evans ◽  
M. P. Chipperfield ◽  
N. Butkovskaya ◽  
A. Kukui ◽  
...  

Abstract. We have studied the impact of the recently established reaction NO+HO2→HNO3 on atmospheric chemistry. A pressure and temperature-dependent parameterisation of this minor channel of the NO+HO2→NO2+OH reaction has been included in both a 2-D stratosphere-troposphere model and a 3-D tropospheric chemical transport model (CTM). Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT). Including the reaction leads to a reduction in NOx everywhere in the troposphere, with the largest decrease of 25% in the tropical and southern hemisphere UT. The tropical UT also has a corresponding large increase in HNO3 of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. Mean global decreases in OH are around 13% which leads to a increase in CH4 lifetime of 5%. Due to the impact of decreased NOx on the OH:HO2 partitioning, modelled HO2 actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and southern hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.


2009 ◽  
Vol 9 (19) ◽  
pp. 7505-7518 ◽  
Author(s):  
C. L. Charlton-Perez ◽  
M. J. Evans ◽  
J. H. Marsham ◽  
J. G. Esler

Abstract. A high resolution chemical transport model of the marine boundary layer is designed in order to investigate the detailed chemical evolution of a ship plume in a tropical location. To estimate systematic errors due to finite model resolution, otherwise identical simulations are run at a range of model resolutions. Notably, to obtain comparable plumes in the different simulations, it is found necessary to use an advection scheme consistent with the Large Eddy Model representation of sub-grid winds for those simulations with degraded resolution. Our simulations show that OH concentration, NOx lifetime and ozone production efficiency of the model change by 8%, 32% and 31% respectively between the highest (200 m×200 m×40 m) and lowest resolution (9600 m×9600 m×1920 m) simulations. Interpolating to the resolution of a typical global composition transport model (CTM, 5°×5°), suggests that a CTM overestimates OH, NOx lifetime and ozone production efficiency by approximately 15%, 55% and 59% respectively. For the first time, by explicitly degrading the model spatial resolution we show that there is a significant reduction in model skill in accurately simulating the aforementioned quantities due to the coarse resolution of these CTMs and the non-linear nature of atmospheric chemistry. These results are significant for the assessment and forecasting of the climate impact of ship NOx and indicate that for realistic representation of ship plume emissions in CTMs, some suitable parametrisation is necessary at current global model resolutions.


2006 ◽  
Vol 6 (4) ◽  
pp. 7959-8009
Author(s):  
W. Lei ◽  
B. de Foy ◽  
M. Zavala ◽  
R. Volkamer ◽  
L. T. Molina

Abstract. An episodic simulation is conducted to characterize ozone (O3) photochemical production and investigate its sensitivity to emission changes of ozone precursors in the Mexico City Metropolitan Area (MCMA) using the Comprehensive Air Quality Model with extensions (CAMx). High Ox (O3+NO2) photochemical production rates of 10–80 ppb/h are predicted due to the high reactivity of volatile organic compounds (VOCs) in which alkanes, alkenes, and aromatics exert comparable contributions. The predicted ozone production efficiency is between 4–10 O3 molecules per NOx molecule oxidized, and increases with VOC-to-NO2 reactivity ratio. Process apportionment analyses indicate significant outflow of pollutants such as O3 and peroxyacetyl nitrate (PAN) from the urban area to the surrounding regional environment. PAN is not in chemical-thermal equilibrium during the photochemically active periods. Sensitivity studies of O3 production suggest that O3 formation in the MCMA urban region with less chemical aging (NOz/NOy<0.3) is VOC-limited. Both the simulated behavior of O3 production and its sensitivities to precursors suggest that midday O3 formation during this episode is VOC sensitive in the urban region on the basis of the current emissions inventory. More episodic studies are needed to construct a comprehensive and representative picture of the O3 production characteristics and its response to emission controls.


2007 ◽  
Vol 7 (5) ◽  
pp. 1347-1366 ◽  
Author(s):  
W. Lei ◽  
B. de Foy ◽  
M. Zavala ◽  
R. Volkamer ◽  
L. T. Molina

Abstract. An episodic simulation is conducted to characterize midday (12:00–17:00 CDT) ozone (O3) photochemical production and to investigate its sensitivity to emission changes of ozone precursors in the Mexico City Metropolitan Area (MCMA) during an "O3-South" meteorological episode using the Comprehensive Air Quality Model with extensions (CAMx). High Ox (O3+NO2) photochemical production rates of 10–80 ppb/h are predicted due to the high reactivity of volatile organic compounds (VOCs) in which alkanes, alkenes, and aromatics exert comparable contributions. The predicted ozone production efficiency is between 4–10 O3 molecules per NOx molecule oxidized, and increases with VOC-to-NO2 reactivity ratio. Process apportionment analyses indicate significant outflow of pollutants such as O3 and peroxyacetyl nitrate (PAN) from the urban area to the surrounding regional environment. PAN is not in chemical-thermal equilibrium during the photochemically active periods. Sensitivity studies of O3 production suggest that O3 formation in the MCMA urban region with less chemical aging (NOz/NOy<0.3) is VOC-limited. Both the simulated behavior of O3 production and its sensitivities to precursors suggest that midday O3 formation during this episode is VOC-sensitive in the urban region on the basis of the current emissions inventory estimates, and current NOx levels depress the O3 production.


2009 ◽  
Vol 9 (2) ◽  
pp. 8587-8618 ◽  
Author(s):  
C. L. Charlton-Perez ◽  
M. J. Evans ◽  
J. H. Marsham ◽  
J. G. Esler

Abstract. A high resolution chemical transport model of the marine boundary layer is designed in order to investigate the detailed chemical evolution of a ship plume. To estimate systematic errors due to finite model resolution, otherwise identical simulations are run at a range of model resolutions. Notably, to obtain comparable plumes in the different simulations, it is found necessary to use an advection scheme consistent with the Large Eddy Model representation of sub-grid winds for those simulations with degraded resolution. Our simulations show that OH concentration, NOx lifetime and ozone production efficiency of the model change by 8%, 32% and 31% respectively between the highest (200 mx200 mx40 m) and lowest resolution (9600 mx9600 mx1920 m) simulations. Interpolating to the resolution of a typical global composition transport model (CTM, 5°x5°), suggests that a CTM overestimates OH, NOx lifetime and ozone production efficiency by approximately 15%, 55% and 59% respectively. For the first time, it is shown explicitly that the reduction in model skill is due to the coarse resolution of these CTMs and the non-linear nature of atmospheric chemistry. These results are significant for the assessment and forecasting of the climate impact of ship NOx and indicate that for realistic representation of ship plume emissions in CTMs, some suitable parametrisation is necessary at current global model resolutions.


2009 ◽  
Vol 9 (3) ◽  
pp. 13693-13737 ◽  
Author(s):  
A. P. Tsimpidi ◽  
V. A. Karydis ◽  
M. Zavala ◽  
W. Lei ◽  
L. Molina ◽  
...  

Abstract. New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modeling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA) for approximately a week during April of 2003. The emission inventory, which uses as starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA) concentrations peak in the center of Mexico City reaching values above 40 μg m−3. The model predictions are compared with Aerosol Mass Spectrometry (AMS) observations and their Positive Matrix Factorization (PMF) analysis. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA) and Oxygenated Organic Aerosol (OOA) concentrations and diurnal profiles. The small OA underprediction during the rush hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol observations for the right reasons. Other combinations of contributions of primary, aged primary, and secondary organic aerosol production rates may lead to similar results. The model results suggest strongly that during the simulated period transport of OA from outside the city was a significant contributor to the observed OA levels. Future simulations should use a larger domain in order to test whether the regional OA can be predicted with current SOA parameterizations. Sensitivity tests indicate that the predicted OA concentration is especially sensitive to the volatility distribution of the emissions in the lower volatility bins.


Sign in / Sign up

Export Citation Format

Share Document