scholarly journals Scenarios in the development of Mediterranean cyclones

2007 ◽  
Vol 12 ◽  
pp. 59-65 ◽  
Author(s):  
M. Romem ◽  
B. Ziv ◽  
H. Saaroni

Abstract. The Mediterranean is one of the most cyclogenetic regions in the world. The cyclones are concentrated along its northern coasts and their tracks are oriented more or less west-east, with several secondary tracks connecting them to Europe and to North Africa. The aim of this study is to examine scenarios in the development of Mediterranean cyclones, based on five selected winter seasons (October–March). We detected the cyclones subjectively using 6-hourly Sea-Level Pressure maps, based on the NCAR/NCEP reanalysis archive. HMSO (1962) has shown that most Mediterranean cyclones (58%) enter the Mediterranean from the Atlantic Ocean (through Biscay and Gibraltar), and from the south-west, the Sahara Desert, while the rest are formed in the Mediterranean Basin itself. Our study revealed that only 13% of the cyclones entered the Mediterranean, while 87% were generated in the Mediterranean Basin. The entering cyclones originate in three different regions: the Sahara Desert (6%), the Atlantic Ocean (4%), and Western Europe (3%). The cyclones formed within the Mediterranean Basin were found to generate under the influence of external cyclonic systems, i.e. as "daughter cyclones" to "parent cyclones" or troughs. These parent systems are located in three regions: Europe (61%), North Africa and the Red Sea (34.5%) and the Mediterranean Basin itself (4.5%). The study presents scenarios in the development of Mediterranean cyclones during the winter season, emphasizing the cyclogenesis under the influence of various external forcing. The large difference with respect to the findings of HMSO (1962) is partly explained by the dominance of spring cyclones generating in the Sahara Desert, especially in April and May that were not included in our study period.

2009 ◽  
Vol 9 (1) ◽  
pp. 1521-1560 ◽  
Author(s):  
M. Beekmann ◽  
R. Vautard

Abstract. The variability of the relative sensitivity to volatile organic compounds (VOC) or NOx emissions, the chemical regime, over Europe during summers 2001 to 2003 is simulated with a regional scale transport-chemistry model. The robustness of chemical regimes is shown. A VOC sensitive regime over North-Western Europe and a mainly NOx sensitive regime over the Mediterranean basin and Eastern Europe are found, confirming earlier published results. The chemical regime time variability, its robustness to several environmental factors (seasonality, interannual variability) and to model uncertainty are thoroughly analysed. The chemical regime spatial structure only slightly depends on the ozone target considered (daily ozone maximum or AOT40, SOMO35, ...). Differences between particular years and summer months are weak. Day to day variability is significant but does not change the occurrence of one or another chemical regime over North-Western Europe and the Mediterranean basin. Expected decreases in anthropogenic NOx emissions over Europe since the last and for the next few decades have shifted and will shift chemical regimes to more NOx sensitive. The predictive and explanatory use of chemical regime indicator species is also investigated. For all cases but near ship tracks over the Mediterranean basin, the spatial pattern of chemical regimes appears to be robust with respect to model uncertainty.


2009 ◽  
Vol 6 (4) ◽  
pp. 647-662 ◽  
Author(s):  
I. E. Huertas ◽  
A. F. Ríos ◽  
J. García-Lafuente ◽  
A. Makaoui ◽  
S. Rodríguez-Gálvez ◽  
...  

Abstract. The exchange of both anthropogenic and natural inorganic carbon between the Atlantic Ocean and the Mediterranean Sea through Strait of Gibraltar was studied for a period of two years under the frame of the CARBOOCEAN project. A comprehensive sampling program was conducted, which was design to collect samples at eight fixed stations located in the Strait in successive cruises periodically distributed through the year in order to ensure a good spatial and temporal coverage. As a result of this monitoring, a time series namely GIFT (GIbraltar Fixed Time series) has been established, allowing the generation of an extensive data set of the carbon system parameters in the area. Data acquired during the development of nine campaigns were analyzed in this work. Total inorganic carbon concentration (CT) was calculated from alkalinity-pHT pairs and appropriate thermodynamic relationships, with the concentration of anthropogenic carbon (CANT) being also computed using two methods, the ΔC* and the TrOCA approach. Applying a two-layer model of water mass exchange through the Strait and using a value of −0.85 Sv for the average transport of the outflowing Mediterranean water recorded in situ during the considered period, a net export of inorganic carbon from the Mediterranean Sea to the Atlantic was obtained, which amounted to 25±0.6 Tg C yr−1. A net alkalinity output of 16±0.6 Tg C yr−1 was also observed to occur through the Strait. In contrast, the Atlantic water was found to contain a higher concentration of anthropogenic carbon than the Mediterranean water, resulting in a net flux of CANT towards the Mediterranean basin of 4.20±0.04 Tg C yr−1 by using the ΔC* method, which constituted the most adequate approach for this environment. A carbon balance in the Mediterranean was assessed and fluxes through the Strait are discussed in relation to the highly diverse estimates available in the literature for the area and the different approaches considered for CANT estimation. This work unequivocally confirms the relevant role of the Strait of Gibraltar as a controlling point for the biogeochemical exchanges occurring between the Mediterranean Sea and the Atlantic Ocean and emphasizes the influence of the Mediterranean basin in the carbon inventories of the North Atlantic.


Author(s):  
Noam Sienna

Abstract The first edition of Sefer Hatashbe, a collection of responsa printed in Amsterdam in 1739 at the press of Naftali Herz Levi Rofé, is a magnificent example of the fine typography and engraving that contributed to the prominence of 18th-century Dutch Jewish printing. Through an examination of the newly identified manuscript copy which was used in the printing house to typeset this book, I trace the story of the printing of Sefer Hatashbe through the efforts of Meir Crescas of Algiers, and his collaboration with Ashkenazi, Sephardi, Maghrebi, and Italian Jewish communities. I demonstrate how the material facets of book production both relied on and reinforced the various networks ‐ intellectual, financial, religious, communal, familial, social ‐ that linked Jewish communities around the Mediterranean Basin and beyond, across class, nationality, and language.


2020 ◽  
Author(s):  
Manfred A. Lange

<p>The region of the Middle East and North Africa (MENA region) encompasses countries of the eastern Mediterranean, the Middle East, and North Africa, from Morocco in the West to the Islamic Republic of Iran in the East and from the Syrian Arab Republic in the North to the Republic of Yemen in the South. It is home to some 500 million inhabitants and is characterized by widely varied political and economic settings and a rich cultural heritage. Stark environmental gradients, as well as significant differences in the provision of ecosystem services, both East to West and South to North, are typical for the MENA Region.</p><p>Climate changes in the Mediterranean Basin, in general, and in the MENA countries, in particular, currently exceed global mean values significantly. Numerical model results indicate that this trend will continue in the near future and imply that the number of extreme summer temperatures and heatwaves may increase significantly over the coming decades. At the same time, a decrease in precipitation and a significantly longer dry season for most MENA countries than at present are anticipated. This leads to a significantly increased demand for water and energy. In addition, other factors further exacerbate these demands in the MENA, including the general economic development, extreme population growth and increasing urbanization, changes in lifestyle, shifting consumption patterns, inefficiencies in the use of resources that result from technical and managerial inadequacies and energy and water subsidies in several countries of the region to name but a few.</p><p>The impacts of climate change will be particularly severe in urban settings and large cities of the Mediterranean Basin and the MENA region. Cities will see an enhanced heat accumulation compared to the surrounding rural land due to heat-build-up in buildings, transportation infrastructure, and enhanced human activities. Reduced ventilation within cities exacerbates the warming, particularly during summer heatwaves. Consequently, additional, energy-intensive space cooling will be needed in order to maintain acceptable indoor conditions. With regard to water scarcity, the aforementioned decreases in precipitation will reduce available drinking water for city inhabitants and green spaces. This requires the provision of unconventional water sources, e.g., through desalination, which requires significant quantities of energy. Overall, climate change will exacerbate resource demand for water and energy, in general, and in urban settings, in particular.</p><p>However, the provision of water and energy are interrelated. In order to maintain water and energy security in the MENA region, these issues need therefore be considered holistically in the framework of the Water-Energy-Nexus (WEN).</p><p>The present paper aims to elucidate some of the interrelationships between water and energy resources and their provision and will briefly outline a few of the possible mitigation/adaptation options/strategies to reduce adverse impacts of climate change on the MENA region and its inhabitants.</p>


2021 ◽  
Author(s):  
Lorenzo Pubblici

This book is a synthesis of the great migrations of the 6th-13th centuries, focused on the median space between the two extremes of the Eurasian continent: Western Europe and Eastern Asia. In the light of the sources, it aims to reassess the complexity of the relationships between the nomads of the steppes and the sedentarized societies that came into contact with them. The choice to focus on the Qïpčaq-Cumans is due to their history, unique because they never constituted an organized and centralized center of collective power (stateless nomads); and paradigmatic, because it encompasses all the constitutive elements of steppe nomadism: social heterogeneity, mobility, military preparation, attraction for trade and willingness to negotiate. The migrations of the nomads of the steppes and their arrival close to the great organized communities of the Islamic and Christian world, from Asia to Europe, contributed to triggering a process of integration between Asia and the Mediterranean basin, a process that the Mongol invasion and conquest completed, giving birth to a new shared global space.


2014 ◽  
Vol 14 (7) ◽  
pp. 9975-10024
Author(s):  
P. Ricaud ◽  
B. Sič ◽  
L. El Amraoui ◽  
J.-L. Attié ◽  
P. Huszar ◽  
...  

Abstract. The space and time variabilities of methane (CH4) total column and upper tropospheric mixing ratios are analyzed above the Mediterranean Basin (MB) as part of the Chemical and Aerosol Mediterranean Experiment (ChArMEx) programme. Spaceborne measurements from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument on the Greenhouse gases Observing SATellite (GOSAT) satellite, the Atmospheric InfraRed Spectrometer (AIRS) on the AURA platform and the Infrared Atmospheric Sounder Interferometer (IASI) instrument aboard the MetOp-A platform are used in conjunction with model results from the Chemical Transport Model (CTM) MOCAGE, and the Chemical Climate Models (CCMs) CNRM-AOCCM and LMDz-OR-INCA (according to different emission scenarios). In order to minimize systematic errors in the spaceborne measurements, we have only considered maritime pixels over the MB. The period under interest spans from 2008 to 2011 considering satellite and MOCAGE data and, regarding the CCMs, from 2001 to 2010. An East-West gradient in CH4 is observed and modelled whatever the season considered. In winter, air masses mainly originating from Atlantic Ocean and Europe tend to favour an elevated amount of mid-to-upper tropospheric CH4 in the West vs. the East of the MB, with a general upward transport above the MB. In summer, the meteorological state of the MB is changed, favouring air from Northern Africa and Middle East together with Atlantic Ocean and Europe, with a general downward motion above the MB. The Asian Monsoon traps and uplifts high amounts of CH4 that are transported towards North Africa and Middle East by the Asian Monsoon Anticyclone to finally reach and descent in the East of the MB. Consequently, the mid-to-upper tropospheric CH4 is much greater in the East than in the West of the MB. The seasonal variation of the difference in CH4 between the East and the West MB does show a maximum in summer for pressures from 500 to 100 hPa considering both spaceborne measurements and model results whatever the emission scenarios used. From this study, we can conclude that CH4 in the mid-to-upper troposphere over the MB is mainly affected by long-range transport, particularly intense in summer from Asia. In the low-to-mid troposphere, the local sources of emission in the vicinity of the MB mainly affect the CH4 variability.


2014 ◽  
Vol 87 (3) ◽  
pp. 249-258 ◽  
Author(s):  
Beatriz Tomé ◽  
João P. Maia ◽  
Daniele Salvi ◽  
José C. Brito ◽  
Miguel A. Carretero ◽  
...  

2010 ◽  
Vol 10 (20) ◽  
pp. 10067-10084 ◽  
Author(s):  
M. Beekmann ◽  
R. Vautard

Abstract. The variability of the relative sensitivity of photochemical ozone formation to volatile organic compounds (VOC) and NOx emissions, the chemical regime, over Europe during summers 2001 to 2003 is simulated with a regional scale transport-chemistry model. The robustness and variability of chemical regimes is shown. A VOC sensitive regime over North-Western Europe and a mainly NOx sensitive regime over the Mediterranean basin and Eastern Europe are found, confirming earlier published results. The chemical regime time variability, its robustness with respect to several environmental factors (seasonality, interannual variability) and with respect to model uncertainty are thoroughly analysed. For the regions with well pronounced chemical regimes over North-Western Europe and the Mediterranean, the chemical regime occurrence only slightly depends on the ozone target considered – daily ozone or Ox (= O3 + NO2) maximum or mean, AOT's, SOMO35, .... For these regions, differences between particular years and summer months are weak, day to day variability is significant but does not change the occurrence of one or another chemical regime. On the contrary, over North-Eastern Germany, the chemical regime changes form one day to another and is also dependent on the ozone target chosen. Expected decreases in anthropogenic NOx emissions over Europe since the last and for the next few decades have shifted and will shift chemical regimes to more NOx sensitive. The predictive skill of chemical regime indicator species is made evident at continental scale, extending their spatial range of applicability with respect to earlier studies. Several sensitivity tests were performed in order to account for major sources of model uncertainty. With the exception of regions near ship tracks over the Mediterranean basin, the spatial pattern of chemical regimes appears to be robust with respect to model uncertainty for all cases tested.


2009 ◽  
Vol 9 (2) ◽  
pp. 7825-7872 ◽  
Author(s):  
P. Cristofanelli ◽  
A. Marinoni ◽  
J. Arduini ◽  
U. Bonafè ◽  
F. Calzolari ◽  
...  

Abstract. High levels of trace gas (O3 and CO) and aerosol (BC, fine and coarse particles) concentrations, as well as high scattering coefficient (σs) values, were recorded at the regional GAW-WMO station of Mt. Cimone (MTC, 2165 m a.s.l., Italy) during the period 26–30 August 2007. Analysis of air-mass circulation, aerosol chemical characterization and trace gas and aerosol emission ratios (ERs), showed that high O3 and aerosol levels were likely linked to (i) the transport of anthropogenic pollution from Northern Italy, and (ii) the advection of air masses rich in mineral dust and biomass burning (BB) products from North Africa. In particular, during the advection of air masses from North Africa, the CO and aerosol levels (CO: 175 ppbv, BC: 1015 ng/m3, fine particle: 83.8 cm−3, σs: 84.5 Mm−1) were even higher than during the pollution event (CO: 138 ppbv, BC: 733 ng/m3, fine particles: 41.5 cm−3, σs: 44.9 Mm−1). Moreover, despite the presence of mineral dust able to significantly affect the O3 concentration, the analysis of ERs showed that the BB event represented an efficient source of fine aerosol particles (e.g. BC), but also of the O3 recorded at MTC. The results suggest that events of mineral dust mobilization and wildfire emissions over North Africa could significantly influence radiative properties (as deduced from σs observations at MTC) and air quality over the Mediterranean basin and Northern Italy. Since in the future it is expected that wildfire and Saharan dust transport frequency could increase in the Mediterranean basin due to more frequent and severe droughts, similar events will possibly play an important role in influencing the climate and the tropospheric composition over South Europe.


Sign in / Sign up

Export Citation Format

Share Document