scholarly journals Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using Canonical Correlation Analysis

2013 ◽  
Vol 33 ◽  
pp. 41-52 ◽  
Author(s):  
T. Maldonado ◽  
E. Alfaro ◽  
B. Fallas-López ◽  
L. Alvarado

Abstract. High mountains divide Costa Rica, Central America, into two main climate regions, the Pacific and Caribbean slopes, which are lee and windward, respectively, according to the North Atlantic trade winds – the dominant wind regime. The rain over the Pacific slope has a bimodal annual cycle, having two maxima, one in May–June and the other in August-September-October (ASO), separated by the mid-summer drought in July. A first maximum of deep convection activity, and hence a first maximum of precipitation, is reached when sea surface temperature (SST) exceeds 29 °C (around May). Then, the SST decreases to around 1 °C due to diminished downwelling solar radiation and stronger easterly winds (during July and August), resulting in a decrease in deep convection activity. Such a reduction in deep convection activity allows an increase in down welling solar radiation and a slight increase in SST (about 28.5 °C) by the end of August and early September, resulting once again in an enhanced deep convection activity, and, consequently, in a second maximum of precipitation. Most of the extreme events are found during ASO. Central American National Meteorological and Hydrological Services (NMHS) have periodic Regional Climate Outlook Fora (RCOF) to elaborate seasonal predictions. Recently, meetings after RCOF with different socioeconomic stakeholders took place to translate the probable climate impacts from predictions. From the feedback processes of these meetings has emerged that extreme event and rainy days seasonal predictions are necessary for different sectors. As is shown in this work, these predictions can be tailored using Canonical Correlation Analysis for rain during ASO, showing that extreme events and rainy days in Central America are influenced by interannual variability related to El Niño-Southern Oscillation and decadal variability associated mainly with Atlantic Multidecadal Oscillation. Analyzing the geographical distribution of the ASO-2010 disaster reports, we noticed that they did not necessarily agree with the geographical extreme precipitation event distribution, meaning that social variables, like population vulnerability, should be included in the extreme events impact analysis.

2018 ◽  
Vol 31 (2) ◽  
pp. 727-741 ◽  
Author(s):  
Sapna Rana ◽  
James Renwick ◽  
James McGregor ◽  
Ankita Singh

Central southwest Asia (CSWA; 20°–47°N, 40°–85°E) is a water-stressed region prone to significant variations in precipitation during its winter precipitation season of November–April. Wintertime precipitation is crucial for regional water resources, agriculture, and livelihood; however, in recent years droughts have been a notable feature of CSWA interannual variability. Here, the predictability of CSWA wintertime precipitation is explored based on its time-lagged relationship with the preceding months’ (September–October) sea surface temperature (SST), using a canonical correlation analysis (CCA) approach. For both periods, results indicate that for CSWA much of the seasonal predictability arises from SST variations in the Pacific related to El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO). Additional sources of skill that play a weaker predictive role include long-term SST trends, North Atlantic variability, and regional teleconnections. CCA cross-validation skill shows that the regional potential predictability has a strong dependency on the ENSO phenomenon, and the strengthening (weakening) of this relationship yields forecasts with higher (lower) predictive skill. This finding is validated by the mean cross-validated correlation skill of 0.71 and 0.38 obtained for the 1980/81–2014/15 and 1950/51–2014/15 CCA analyses, respectively. The development of cold (warm) ENSO conditions during September–October, in combination with cold (warm) PDO conditions, is associated with a northward (southward) shift of the jet stream and a strong tendency of negative (positive) winter precipitation anomalies; other sources of predictability influence the regional precipitation directly during non-ENSO years or by modulating the impact of ENSO teleconnection based on their relative strengths.


1985 ◽  
Vol 24 (02) ◽  
pp. 91-100 ◽  
Author(s):  
W. van Pelt ◽  
Ph. H. Quanjer ◽  
M. E. Wise ◽  
E. van der Burg ◽  
R. van der Lende

SummaryAs part of a population study on chronic lung disease in the Netherlands, an investigation is made of the relationship of both age and sex with indices describing the maximum expiratory flow-volume (MEFV) curve. To determine the relationship, non-linear canonical correlation was used as realized in the computer program CANALS, a combination of ordinary canonical correlation analysis (CCA) and non-linear transformations of the variables. This method enhances the generality of the relationship to be found and has the advantage of showing the relative importance of categories or ranges within a variable with respect to that relationship. The above is exemplified by describing the relationship of age and sex with variables concerning respiratory symptoms and smoking habits. The analysis of age and sex with MEFV curve indices shows that non-linear canonical correlation analysis is an efficient tool in analysing size and shape of the MEFV curve and can be used to derive parameters concerning the whole curve.


Sign in / Sign up

Export Citation Format

Share Document