scholarly journals OGS improvements in the year 2011 in running the Northeastern Italy Seismic Network

2013 ◽  
Vol 34 ◽  
pp. 5-8 ◽  
Author(s):  
P. L. Bragato ◽  
D. Pesaresi ◽  
A. Saraò ◽  
P. Di Bartolomeo ◽  
G. Durì

Abstract. The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS (Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude Mw = 6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 12 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of 93 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy, as shown in Fig. 1 (Bragato et al., 2011; Saraò et al., 2010). Since 2002 OGS-CRS is using the Antelope software suite as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps" (Bragato et al., 2010; Pesaresi et al., 2008). SeisComP is also used as a real time data exchange server tool. In order to improve the seismological monitoring of the Northeastern Italy area, at OGS-CRS we tuned existing programs and created ad hoc ones like: a customized web server named PickServer to manually relocate earthquakes, a script for automatic moment tensor determination, scripts for web publishing of earthquake parametric data, waveforms, state of health parameters and shaking maps, noise characterization by means of automatic spectra analysis, and last but not least scripts for email/SMS/fax alerting. A new OGS-CRS real time seismological website (http://rts.crs.inogs.it/) has also been operative since several years.

2014 ◽  
Vol 26 (11) ◽  
pp. 115103
Author(s):  
李桂花 Li Guihua ◽  
赵五元 Zhao Wuyuan ◽  
马进忠 Ma Jinzhong ◽  
汪荣荣 Wang Rongrong

2012 ◽  
Vol 24 (12) ◽  
pp. 2897-2900
Author(s):  
曾贤强 Zeng Xianqiang ◽  
敬岚 Jing Lan ◽  
龙银东 Long Yindong ◽  
姚泽恩 Yao Ze’en ◽  
郭玉辉 Guo Yuhui

2014 ◽  
Vol 36 ◽  
pp. 61-67
Author(s):  
D. Pesaresi ◽  
M. Romanelli ◽  
C. Barnaba ◽  
P. L. Bragato ◽  
G. Durì

Abstract. The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results.


2021 ◽  
Author(s):  
Pauline Galea ◽  
Matthew Agius ◽  
George Bozionelos ◽  
Sebastiano D'Amico ◽  
Daniela Farrugia

<p>The Maltese islands are a small country 15 km wide by 30 km long located about 100 km south of Sicily, Italy. Since 2015 Malta has set up a national seismic network. The primary aim of this network is to monitor in real-time and to locate more accurately the seismicity close to the islands and the seismicity in the Sicily Channel, offshore between Sicily, Tunisia and Libya. This Channel presents a range of interesting and complex tectonic processes that have developed in response to various regional stress fields mainly as a result of the collision between the African plate with Europe. The Maltese islands are known to have been affected by a number of earthquakes originating in the Channel, with some of these events estimated to be very close to the islands.</p><p>The seismotectonic characteristics of the Sicily channel, particularly south of the Maltese islands, is not well understood. This situation is being partially addressed through an increase in the number of seismic stations on the Maltese archipelago. The Malta Seismic Network (FDSN code ML), managed by the Seismic Monitoring and Research Group, within the Department of Geosciences, University of Malta, currently comprises 8 broadband, 3-component stations over an area slightly exceeding 300 km<sup>2</sup>. We present a technical description of the MSN including quality control tests such as spectral analysis (Power Spectral Density and HVSR), station orientations and timings as well as examples of local and regional earthquakes recorded on the network. We describe the upgrades to real-time data transmission and archiving, and automated epicentre location for continuous seismic monitoring using the local network amalgamated with a virtual seismic network to monitor the seismicity in the extended Mediterranean region. Such a dense national network, besides improving epicentral location in the Sicily Channel, is providing valuable information on microearthquake activity known to occur in close proximity to the islands, which has been very difficult to study in the past. It also provides an important tool for analysing site response and site amplification related to underlying geology, which constitutes a major component of seismic hazard analysis on the islands. Furthermore, the increase in seismic stations to the seismic monitoring system provides more robust earthquake estimates for the tsunami monitoring/simulation system.</p><p>Funding for stations was provided by Interreg Italia-Malta projects (SIMIT and SIMIT-THARSY, Codes B1-2.19/11 and C1-3.2-57) and by Transport Malta.</p>


1992 ◽  
Vol 7 (3) ◽  
pp. 1322-1332 ◽  
Author(s):  
K. Kato ◽  
I. Dabbaghchi ◽  
J.J. Allemong ◽  
J.K. Robinson ◽  
J. Singh ◽  
...  

2013 ◽  
Vol 385-386 ◽  
pp. 1655-1658
Author(s):  
Da Hua Li ◽  
Hang Li ◽  
Kai Lin Zhang

The submitting of OPC (OLE for Process Control) has promoted the progress of the data collection in process control and industrial automation, and formulated the industry standard for the process real-time data exchange. Aiming at the key problem of ensuring the use of application program as OPC client to link multi-remote OPC server and real-time collect process data in control system, OPC technology and the connection and access technology of multi-remote OPC server were introduced and analyzed in detail. This method has been successfully applied to develop the DCS I/O communication and control loop error test software, and provided better performance.


2013 ◽  
Vol 321-324 ◽  
pp. 2561-2565
Author(s):  
Zhuo Yan Chen ◽  
Xu Jian Li

Real-time data exchange platform is of essential significance to achieving digital mining. This paper, based on a systematic introduction of the relevant technologies and functions of the real-time data exchange platform, proposes its architectural design and concludes with relevant research on the key technology of the system.


Sign in / Sign up

Export Citation Format

Share Document