scholarly journals Copernicus Sentinel-1 satellites: sensitivity of antenna offset estimation to orbit and observation modelling

2020 ◽  
Vol 50 ◽  
pp. 87-100 ◽  
Author(s):  
Heike Peter ◽  
Jaime Fernández ◽  
Pierre Féménias

Abstract. The SAR (Synthetic Aperture Radar) Copernicus Sentinel-1 satellites require a high orbit accuracy of 5 cm in 3D in comparison to external processing facilities. The official orbit products delivered by the Copernicus POD (Precise Orbit Determination) Service fulfil this requirement. Nevertheless, analyses have shown discrepancies in the orbit results for the two satellites Sentinel-1A and Sentinel-1B. Since the satellites are identical in construction estimated orbit parameters like the scale factor for the radiation pressure are expected to be at the same magnitude, which is not the case. Estimation of GPS antenna offsets leads to differences between the two satellites, which might explain the discrepancies in the estimated orbit parameters. Such offset estimations are, however, very sensitive to orbit and observation modelling. It has to be assured that the results are not biased by insufficient models. First of all, stabilisation of the antenna offset estimation is achieved by improving the observation modelling by applying single receiver ambiguity resolution. The Copernicus Sentinel-1 satellites have a very complex shape with the long SAR antenna and the two large solar arrays. Antenna offset estimation based on different satellite models may give results which differ by up to 1.5 cm. The dispersion of the estimates is quite large depending also on eclipse and non-eclipse periods. Consideration of simple assumptions on satellite self-shadowing effects improves the satellite model and also the results of the antenna offset estimation. Finally, more consistent results for the two Sentinel-1 satellites are achieved by applying the antenna offset estimates.

2021 ◽  
Author(s):  
Heike Peter ◽  
Marc Fernández ◽  
Daniel Arnold ◽  
Bingbing Duan ◽  
Wim Simons ◽  
...  

<p>The Copernicus Sentinel-1 SAR (Synthetic Aperture Radar) mission consists of two satellites A and B launched in April 2014 and April 2016, respectively. The Copernicus POD (Precise Orbit Determination) Service is responsible for the generation of precise orbital products of the mission requiring a high orbit accuracy of 5 cm in 3D RMS in the comparison to external processing facilities.</p><p>The operational POD setup at the Copernicus POD Service has passed through several updates during the last years. For instance the ITRF update from ITRF08 to ITRF14 at the end of January 2017, the fundamental background model update in May 2020, and the switch to updated GPS antenna reference point coordinates together with the introduction of carrier phase ambiguity fixing at the end of July 2020 have been done to mention just the major changes in the processing. To provide a homogeneous and up-to-date orbit time series for the two satellites a reprocessing of the full mission period is done.  </p><p>The quality control of the reprocessed Copernicus Sentinel-1 orbits is done by analysing processing metrics and by comparing the results to orbits, which were independently reprocessed by members of the Copernicus POD Quality Working Group (QWG).</p><p>Results from the full Copernicus Sentinel-1 POD reprocessing campaign are presented together with the accuracy and quality assessment of the orbits.</p>


2020 ◽  
Author(s):  
Xinyuan Mao ◽  
Daniel Arnold ◽  
Adrian Jäggi

<p>Sentinel-3 is an Earth observation satellite formation of the European Space Agency (ESA) devoted to oceanography and land-vegetation monitoring. It operates as a crucial segment of the Copernicus Programme coordinated by the European Union. Up until now, two identical Sentinel-3 satellites, Sentinel-3A and -3B, have been launched into a circular sun-synchronous orbit with an altitude of about 800 km. Their prime onboard payload systems, e.g. radar altimeter, necessitate high-precision orbits, particularly in the radial direction. This can be fulfilled by using the collected measurements from the onboard dual-frequency high-precision multi-channel Global Positioning System (GPS) receivers. The equipped laser retro-reflector allows for external and independent validation to the GPS-derived orbits.</p><p>This research will outline the recent Precise Orbit Determination (POD) methodology developments at the Astronomical Institute of the University of Bern (AIUB) and investigate  the POD comparison between Sentinel-3A and -3B satellites. On one hand, a refined satellite non-gravitational force modeling strategy is newly implemented into the BERNESE GNSS software. It consists of comprehensive modeling of atmospheric drag, solar radiation pressure and Earth albedo/radiation pressure based on an 8-plate satellite macromodel. Radiation pressure is modeled considering spontaneous re-emission for non-solar plates. Besides, a linear interpolation between monthly Clouds and the Earth's Radiant Energy System (CERES) S4 grid products is specifically done for the Earth albedo/radiation pressure modeling. On the other hand, use is made of the GNSS Observation-Specific Bias (OSB) products provided by the Center for Orbit Determination in Europe (CODE), allowing for the so-called single-receiver ambiguity resolution.</p><p>A test period is selected from 7/Jun/2018 to 14/Oct/2018 (Day of Year: 158-287), when Sentinel-3A and -3B satellites operated in a tandem formation maintained at a separation of about 30 s. This foresees nearly identical in-flight environment for both satellites and thereby enables direct POD performance comparison. The single-receiver (zero-difference) ambiguity-fixed orbit solutions can also be compared with the double-difference ambiguity-fixed baseline solution. Results reveal that the implemented non-gravitational force modeling in POD leads to a reduction of empirical acceleration estimates, which are designated to compensate uncertainties in the satellite dynamic models. Single-receiver ambiguity resolution further improves the reduced-dynamic orbits and significant enhancement occurs to the kinematic orbits. This research implies promising benefits to the Sentinel-3 scientific research community.</p>


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Xingyu Zhou ◽  
Hua Chen ◽  
Wenlan Fan ◽  
Xiaohui Zhou ◽  
Qusen Chen ◽  
...  

2019 ◽  
Vol 11 (23) ◽  
pp. 2815 ◽  
Author(s):  
Xingxing Li ◽  
Jiaqi Wu ◽  
Keke Zhang ◽  
Xin Li ◽  
Yun Xiong ◽  
...  

The rapid growing number of earth observation missions and commercial low-earth-orbit (LEO) constellation plans have provided a strong motivation to get accurate LEO satellite position and velocity information in real time. This paper is devoted to improve the real-time kinematic LEO orbits through fixing the zero-differenced (ZD) ambiguities of onboard Global Navigation Satellite System (GNSS) phase observations. In the proposed method, the real-time uncalibrated phase delays (UPDs) are estimated epoch-by-epoch via a global-distributed network to support the ZD ambiguity resolution (AR) for LEO satellites. By separating the UPDs, the ambiguities of onboard ZD GPS phase measurements recover their integer nature. Then, wide-lane (WL) and narrow-lane (NL) AR are performed epoch-by-epoch and the real-time ambiguity–fixed orbits are thus obtained. To validate the proposed method, a real-time kinematic precise orbit determination (POD), for both Sentinel-3A and Swarm-A satellites, was carried out with ambiguity–fixed and ambiguity–float solutions, respectively. The ambiguity fixing results indicate that, for both Sentinel-3A and Swarm-A, over 90% ZD ambiguities could be properly fixed with the time to first fix (TTFF) around 25–30 min. For the assessment of LEO orbits, the differences with post-processed reduced dynamic orbits and satellite laser ranging (SLR) residuals are investigated. Compared with the ambiguity–float solution, the 3D orbit difference root mean square (RMS) values reduce from 7.15 to 5.23 cm for Sentinel-3A, and from 5.29 to 4.01 cm for Swarm-A with the help of ZD AR. The SLR residuals also show notable improvements for an ambiguity–fixed solution; the standard deviation values of Sentinel-3A and Swarm-A are 4.01 and 2.78 cm, with improvements of over 20% compared with the ambiguity–float solution. In addition, the phase residuals of ambiguity–fixed solution are 0.5–1.0 mm larger than those of the ambiguity–float solution; the possible reason is that the ambiguity fixing separate integer ambiguities from unmodeled errors used to be absorbed in float ambiguities.


2019 ◽  
Vol 11 (24) ◽  
pp. 3024
Author(s):  
Yang Liu ◽  
Yanxiong Liu ◽  
Ziwen Tian ◽  
Xiaolei Dai ◽  
Yun Qing ◽  
...  

The Global Navigation Satellite System (GNSS) ultra-rapid precise orbits are crucial for global and wide-area real-time high-precision applications. The solar radiation pressure (SRP) model is an important factor in precise orbit determination. The real-time orbit determination is generally less accurate than the post-processed one and may amplify the instability and mismodeling of SRP models. Also, the impact of different SRP models on multi-GNSS real-time predicted orbits demands investigations. We analyzed the impact of the ECOM 1 and ECOM 2 models on multi-GNSS ultra-rapid orbit determination in terms of ambiguity resolution performance, real-time predicted orbit overlap precision, and satellite laser ranging (SLR) validation. The multi-GNSS observed orbital arc and predicted orbital arcs of 1, 3, 6, and 24 h are compared. The simulated real-time experiment shows that for GLONASS and Galileo ultra-rapid orbits, compared to ECOM 1, ECOM 2 increased the ambiguity fixing rate to 89.3% and 83.1%, respectively, and improves the predicted orbit accuracy by 9.2% and 27.7%, respectively. For GPS ultra-rapid orbits, ECOM 2 obtains a similar ambiguity fixing rate as ECOM 1 but slightly better orbit overlap precision. For BDS GEO ultra-rapid orbits, ECOM 2 obtains better overlap precision and SLR residuals, while for BDS IGSO and MEO ultra-rapid orbits, ECOM 1 obtains better orbit overlap precision and SLR residuals.


2021 ◽  
Vol 13 (17) ◽  
pp. 3388
Author(s):  
Longjiang Tang ◽  
Jungang Wang ◽  
Huizhong Zhu ◽  
Maorong Ge ◽  
Aigong Xu ◽  
...  

For Global Positioning System (GPS) precise orbit determination (POD), the solar radiation pressure (SRP) is the dominant nongravitational perturbation force. Among the current SRP models, the ECOM and box-wing models are widely used in the International GNSS Service (IGS) community. However, the performance of different models varies over different GPS satellites. In this study, we investigate the performances of different SRP models, including the box-wing and adjustable box-wing as a priori models, and ECOM1 and ECOM2 as parameterization models, in the GPS POD solution from 2017 to 2019. Moreover, we pay special attention to the handling of the shadow factor in the SRP modeling for eclipsing satellites, which is critical to achieve high-precision POD solutions but has not yet been fully investigated. We demonstrate that, as an a priori SRP model, the adjustable box-wing has better performance than the box-wing model by up to 5 mm in the orbit day boundary discontinuity (DBD) statistics, with the largest improvement observed on the BLOCK IIR satellites using the ECOM1 as a parameterization SRP model. The box-wing model shows an insignificant orbit improvement serving as the a priori SRP model. For the eclipsing satellites, the three-dimensional (3D) root mean square (RMS) values of orbit DBD are improved when the shadow factor is applied only in the D direction (pointing toward to Sun) than that in the three directions (D, Y, and B) in the satellite frame. Different SRP models have comparable performance in terms of the Earth rotation parameter (ERP) agreement with the IERS EOP 14C04 product, whereas the magnitude of the length of day (LoD) annual signal is reduced when the shadow factor is applied in the D direction than in the three directions. This study clarifies how the shadow factor should be applied in the GPS POD solution and demonstrates that the a priori adjustable box-wing model combined with ECOM1 is more suitable for high-precision GPS POD solutions, which is useful for the further GNSS data analysis.


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Yongqiang Yuan ◽  
Xingxing Li ◽  
Yiting Zhu ◽  
Yun Xiong ◽  
Jiande Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document