scholarly journals Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI

2017 ◽  
Vol 10 (11) ◽  
pp. 4317-4339 ◽  
Author(s):  
Johan Strandgren ◽  
Jennifer Fricker ◽  
Luca Bugliaro

Abstract. Cirrus clouds remain one of the key uncertainties in atmospheric research. To better understand the properties and physical processes of cirrus clouds, accurate large-scale observations from satellites are required. Artificial neural networks (ANNs) have proved to be a useful tool for cirrus cloud remote sensing. Since physics is not modelled explicitly in ANNs, a thorough characterisation of the networks is necessary. In this paper the CiPS (Cirrus Properties from SEVIRI) algorithm is characterised using the space-borne lidar CALIOP. CiPS is composed of a set of ANNs for the cirrus cloud detection, opacity identification and the corresponding cloud top height, ice optical thickness and ice water path retrieval from the imager SEVIRI aboard the geostationary Meteosat Second Generation satellites. First, the retrieval accuracy is characterised with respect to different land surface types. The retrieval works best over water and vegetated surfaces, whereas a surface covered by permanent snow and ice or barren reduces the cirrus detection ability and increases the retrieval errors for the ice optical thickness and ice water path if the cirrus cloud is thin (optical thickness less than approx. 0.3). Second, the retrieval accuracy is characterised with respect to the vertical arrangement of liquid, ice clouds and aerosol layers as derived from CALIOP lidar data. The CiPS retrievals show little interference from liquid water clouds and aerosol layers below an observed cirrus cloud. A liquid water cloud vertically close or adjacent to the cirrus clearly increases the average retrieval errors for the optical thickness and ice water path, respectively, only for thin cirrus clouds with an optical thickness below 0.3 or ice water path below 5.0 g m−2. For the cloud top height retrieval, only aerosol layers affect the retrieval error, with an increased positive bias when the cirrus is at low altitudes. Third, the CiPS retrieval error is characterised with respect to the properties of the investigated cirrus cloud (ice optical thickness and cloud top height). On average CiPS can retrieve the cirrus cloud top height with a relative error around 8 % and no bias and the ice optical thickness with a relative error around 50 % and bias around ±10 % for the most common combinations of cloud top height and ice optical thickness. Similarities with physically based retrieval methods are evident, which implies that even though the retrieval methods differ in the implementation of physics in the model, the retrievals behave similarly due to physical constraints. Finally, we also show that the ANN retrievals have a low sensitivity to radiometric noise in the SEVIRI observations. For optical thickness and ice water path the relative uncertainty due to noise is less than 10 % down to sub-visual cirrus. For the cloud top height retrieval the uncertainty due to noise is around 100 m for all cloud top heights.

2017 ◽  
Author(s):  
Johan Strandgren ◽  
Jennifer Fricker ◽  
Luca Bugliaro

Abstract. Cirrus clouds remain one of the key uncertainties in atmospheric research. To better understand the properties and physical processes of cirrus clouds, accurate large scale observations from satellites are required. Artificial neural networks (ANNs) have proved to be a useful tool for cirrus cloud remote sensing. Since physics is not implemented explicitly in ANNs, a thorough characterisation of the networks is necessary. In this paper the CiPS (Cirrus Properties from SEVIRI) algorithm is characterised using the space-borne lidar CALIOP. CiPS is composed of a set of ANNs for the cirrus cloud detection, opacity identification and the corresponding cloud top height, ice optical thickness and ice water path retrieval from the imager SEVIRI aboard the geostationary Meteosat Second Generation satellites. First, the retrieval accuracy is characterised with respect to different land surface types. The retrieval works best over water as well as vegetated surfaces, whereas a surface covered by permanent snow & ice or barren reduces the cirrus detection ability and increases the retrieval errors for the ice optical thickness and ice water path if the cirrus cloud is thin. Second, the retrieval accuracy is characterised with respect to the vertical arrangement of liquid, ice clouds and aerosol layers as derived from CALIOP lidar data. The CiPS retrievals show little interference from liquid water clouds and aerosol layers below an observed cirrus cloud. Only for thin cirrus clouds with an optical thickness below 0.3 or ice water path below 5.0 gm−2, a liquid water cloud vertically close or adjacent to the cirrus clearly increases the average retrieval errors for the ice optical thickness and ice water path respectively. For the cloud top height retrieval, only aerosol layers affect the retrieval error, with an increased positive bias when the cirrus is at low altitudes. Third, the CiPS retrieval error is characterised with respect to the properties of the investigated cirrus cloud (ice optical thickness and cloud top height). On average CiPS can retrieve the cirrus cloud top height with a relative error around 8 % and no bias and the ice optical thickness with a relative error around 50 % and bias around 10% for the most common combinations of cloud top height and ice optical thickness. Similarities with physically based retrieval methods are evident, which implies that even though the retrieval methods differ in the physical implementation, the retrievals behave similarly due to physical constraints. Finally, we also show that the ANN retrievals have a low sensitivity to radiometric noise in the SEVIRI observations. For optical thickness and ice water path the relative uncertainty due to noise is less than 10 % down to sub-visual cirrus. For the cloud top height retrieval the uncertainty due to noise is around 100 m for all cloud top heights.


2017 ◽  
Vol 10 (9) ◽  
pp. 3547-3573 ◽  
Author(s):  
Johan Strandgren ◽  
Luca Bugliaro ◽  
Frank Sehnke ◽  
Leon Schröder

Abstract. Cirrus clouds play an important role in climate as they tend to warm the Earth–atmosphere system. Nevertheless their physical properties remain one of the largest sources of uncertainty in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0, respectively, that are retrieved by CALIOP. Among the cirrus-free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8 and of 100 % or less for cirrus clouds with an optical thickness down to 0.07 with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m−2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS also retrieves an opacity flag, which tells us whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP-like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.


2017 ◽  
Author(s):  
Johan Strandgren ◽  
Luca Bugliaro ◽  
Frank Sehnke ◽  
Leon Schröder

Abstract. Cirrus clouds play an important role in climate as they tend to warm the Earth-Atmosphere system. Nevertheless they remain one of the largest uncertainties in atmospheric research. To better understand the physical processes of cirrus clouds and their climate impact, enhanced satellite observations are necessary. In this paper we present a new algorithm, CiPS (Cirrus Properties from SEVIRI), that detects cirrus clouds and retrieves the corresponding cloud top height, ice optical thickness and ice water path using the SEVIRI imager aboard the geostationary Meteosat Second Generation satellites. CiPS utilises a set of artificial neural networks trained with SEVIRI thermal observations, CALIOP backscatter products, the ECMWF surface temperature and auxiliary data. CiPS detects 71 and 95 % of all cirrus clouds with an optical thickness of 0.1 and 1.0 respectively, that are retrieved by CALIOP. Among the cirrus free pixels, CiPS classifies 96 % correctly. With respect to CALIOP, the cloud top height retrieved by CiPS has a mean absolute percentage error of 10 % or less for cirrus clouds with a top height greater than 8 km. For the ice optical thickness, CiPS has a mean absolute percentage error of 50 % or less for cirrus clouds with an optical thickness between 0.35 and 1.8, and of 100 % or less for cirrus clouds with an optical thickness down to 0.07, with respect to the optical thickness retrieved by CALIOP. The ice water path retrieved by CiPS shows a similar performance, with mean absolute percentage errors of 100 % or less for cirrus clouds with an ice water path down to 1.7 g m−2. Since the training reference data from CALIOP only include ice water path and optical thickness for comparably thin clouds, CiPS does also retrieve an opacity flag, which tells whether a retrieved cirrus is likely to be too thick for CiPS to accurately derive the ice water path and optical thickness. By retrieving CALIOP like cirrus properties with the large spatial coverage and high temporal resolution of SEVIRI during both day and night, CiPS is a powerful tool for analysing the temporal evolution of cirrus clouds including their optical and physical properties. To demonstrate this, the life cycle of a thin cirrus cloud is analysed.


2019 ◽  
Vol 55 (2) ◽  
pp. 135-144
Author(s):  
Durgesh Nandan Piyush ◽  
J Satapathy ◽  
J. Srinivasan

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 437
Author(s):  
Chensi Weng ◽  
Lei Liu ◽  
Taichang Gao ◽  
Shuai Hu ◽  
Shulei Li ◽  
...  

Retrieval of ice cloud properties using passive terahertz wave radiometer from space has gained increasing attention currently. A multi-channel regression inversion method for passive remote sensing of ice water path (IWP) in the terahertz band is presented. The characteristics of the upward terahertz radiation in the clear-sky and cloudy-sky are first analyzed using the Atmospheric Radiative Transfer Simulator (ARTS). Nine representative center frequencies with different offsets are selected to study the changes of terahertz radiation caused by microphysical parameters of ice clouds. Then, multiple linear regression method is applied to the inversion of IWP. Combinations of different channels are selected for regression to eliminate the influence of other factors (i.e., particle size and cloud height). The optimal fitting equation are obtained by the stepwise regression method using two oxygen absorption channels (118.75 ± 1.1 GHz, 118.75 ± 3.0 GHz), two water vapor absorption channels (183.31 ± 1.0 GHz, 183.31 ± 7.0 GHz), and two window channels (243.20 ± 2.5 GHz, 874.4 ± 6.0 GHz). Finally, the errors of the proposed inversion method are evaluated. The simulation results show that the absolute errors of this method for the low IWP cases are below 7 g/m2, and the relative errors for the high IWP cases are generally ranging from 10 to 30%, indicating that the multi-channel regression inversion method can achieve satisfactory accuracy.


2021 ◽  
Vol 13 (4) ◽  
pp. 735
Author(s):  
Lei Liu ◽  
Chensi Weng ◽  
Shulei Li ◽  
Letu Husi ◽  
Shuai Hu ◽  
...  

Ice clouds play a critical role in the balance of the earth–atmosphere radiation system, but there are some limitations in the existing remote sensing methods for ice clouds. Terahertz wave is expected to be the best waveband for retrieving ice clouds, with terahertz wavelengths in the order of the size of typical ice cloud particles. An inversion method for the remote sensing of ice clouds at terahertz wavelengths based on genetic algorithm is proposed in this paper. First, suitable channel sets in the terahertz band, which are mainly a combination of absorption lines and window regions, are determined. Then, to improve the efficiency of the generation of the retrieval database, based on the brightness temperature simulated by the atmospheric radiative transfer simulator (ARTS) for different cloud parameters, a fast forward operator is constructed using three-dimensional interpolation to simulate the brightness temperature difference between clear sky and a cloudy scene. Finally, an inversion model to retrieve the ice cloud base height, the effective particle diameter and the ice water path is established based on the genetic algorithm, and an analysis of the inversion errors is performed. The results show that the forward operator, constructed by the nearest interpolation, can accurately calculate the brightness temperature difference at a high speed. The proposed inversion method at terahertz wavelengths based on the genetic algorithm can achieve the expected scientific requirement. The absolute error of the cloud height is around 0.2 km, and the absolute error of the low ice water path (below 20 g/m2) is small, while the relative error of the high ice water path is generally maintained at around 10%, and the absolute error of the effective particle diameter is mostly around 4 μm.


2020 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Lucie Leonarski ◽  
Laurent C.-Labonnote ◽  
Mathieu Compiègne ◽  
Jérôme Vidot ◽  
Anthony J. Baran ◽  
...  

The present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2).


Sign in / Sign up

Export Citation Format

Share Document