scholarly journals Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods

2018 ◽  
Vol 11 (7) ◽  
pp. 3987-4003 ◽  
Author(s):  
Tobias Könemann ◽  
Nicole J. Savage ◽  
J. Alex Huffman ◽  
Christopher Pöhlker

Abstract. Fluorescent dyed polystyrene latex spheres (PSLs) are commonly used for characterization and calibration of instruments detecting fluorescence signals from particles suspended in the air and other fluids. Instruments like the Ultraviolet Aerodynamic Particle Sizer (UV-APS) and the Waveband Integrated Bioaerosol Sensor (WIBS) are widely used for bioaerosol research, but these instruments present significant technical and physical challenges requiring careful characterization with standard particles. Many other research communities use flow cytometry and other instruments that interrogate fluorescence from individual particles, and these also frequently rely on fluorescent PSLs as standards. Nevertheless, information about physical properties of commercially available PSLs provided by each manufacturer is generally proprietary and rarely available, making their use in fluorescence validation and calibration very difficult. This technical note presents an overview of steady-state fluorescence properties of fluorescent and non-fluorescent PSLs, as well as of polystyrene-divinylbenzene (PS-DVB) particles, by using on- and offline spectroscopic techniques. We show that the “fluorescence landscape” of PSLs is more complex than the information typically provided by manufacturers may imply, especially revealing multimodal emission patterns. Furthermore, non-fluorescent PSLs also exhibit defined patterns of fluorescent emission originating from a mixture of polystyrene and detergents, which becomes a crucial point for fluorescence threshold calibrations and qualitative comparison between instruments. By comparing PSLs of different sizes, but doped with the same dye, changes in emission spectra from bulk solutions are not immediately obvious. On a single-particle scale, however, fluorescence intensity values increase with increasing particle size. No significant effect in the fluorescence signatures was detectable by comparing PSLs in dry vs. wet states, indicating that solvent water may only play a minor role as a fluorescence quencher. Because information provided by manufacturers of commercially available PSLs is generally very limited, we provide the steady-state excitation–emission matrices (EEMs) of PSLs as open-access data within the Supplement. Detergent and solvent effects are also discussed in order to provide information not available elsewhere to researchers in the bioaerosol and other research communities. These data are not meant to serve as a fundamental library of PSL properties because of the variability of fluorescent properties between batches and as a function of particle aging and agglomeration. The data presented, however, provide a summary of spectral features which are consistent across these widely used fluorescent standards. Using these concepts, further checks will likely be required by individual researchers using specific lots of standards.

2018 ◽  
Author(s):  
Tobias Könemann ◽  
Nicole J. Savage ◽  
J. Alex Huffman ◽  
Christopher Pöhlker

Abstract. Fluorescent dyed polystyrene latex spheres (PSLs) are commonly used for characterization and calibration of instruments detecting auto-fluorescence signals from particles suspended in the air and other fluids. Instruments like the Ultraviolet Aerodynamic Particle Sizer (UV-APS) and the Waveband Integrated Bio-aerosol Sensor (WIBS) are widely used for bioaerosol research, but these instruments present significant technical and physical challenges requiring careful characterization with standard particles. Many other research communities use flow cytometry and other instruments that interrogate fluorescence from individual particles, and these also frequently rely on fluorescent PSLs as standards. Nevertheless, information about physical properties of commercially available PSLs provided by each manufacturer is generally proprietary and rarely available, making their use in fluorescence validation and calibration very difficult. This technical note presents an overview of steady-state fluorescence properties of fluorescent and non-fluorescent PSLs, as well as for polystyrene-divenylbenzene (PS-DVB) particles, by using on- and off-line spectroscopic techniques. We show that the fluorescence landscape of PSLs is more complex than the information typically provided by manufacturers may imply, especially revealing multimodal emission patterns. Furthermore, non-fluorescent PSLs also exhibit defined patterns of fluorescent emission originating from a mixture of polystyrene- and detergents, which becomes a crucial point for fluorescence threshold calibrations and qualitative comparison between instruments. By comparing PSLs of different sizes, but doped with the same dye, changes in emission spectra from bulk solutions are not immediately obvious. On a single-particle scale, however, fluorescence intensity values increase with increasing particle size. No significant effect in the fluorescence signatures was detectable by comparing PSLs in dry- vs. wet states, indicating that solvent water may only play a minor role as a fluorescence quencher. Because information provided by manufacturers of commercially available PSLs is generally very limited, we provide the steady-state excitation-emission matrices (EEMs) of PSLs as open access data. Detergent and solvent effects are also discussed in order to provide information not available elsewhere to researchers in the bioaerosol and other research communities. These data are not meant to serve as a fundamental library of PSL properties, because of the variability of fluorescent properties between batches and as a function of particle aging and agglomeration. The data presented, however, provide a summary of spectral features which are consistent across these widely used fluorescent standards. Using these concepts, further checks will likely be required by individual researchers using specific lots of standards.


2021 ◽  
Vol 22 (11) ◽  
pp. 5592
Author(s):  
Nataliia V. Bashmakova ◽  
Yevgeniy O. Shaydyuk ◽  
Andriy M. Dmytruk ◽  
Tomasz Świergosz ◽  
Olexiy D. Kachkovsky ◽  
...  

The electronic nature of 4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione (HPPT) was comprehensively investigated in liquid media at room temperature using steady-state and time-resolved femtosecond transient absorption spectroscopic techniques. The analysis of the linear photophysical and photochemical parameters of HPPT, including steady-state absorption, fluorescence and excitation anisotropy spectra, along with the lifetimes of fluorescence emission and photodecomposition quantum yields, revealed the nature of its large Stokes shift, specific changes in the permanent dipole moments under electronic excitation, weak dipole transitions with partially anisotropic character, and high photostability. Transient absorption spectra of HPPT were obtained with femtosecond resolution and no characteristic solvate relaxation processes in protic (methanol) solvent were revealed. Efficient light amplification (gain) was observed in the fluorescence spectral range of HPPT, but no super-luminescence and lasing phenomena were detected. The electronic structure of HPPT was also analyzed with quantum-chemical calculations using a DFT/B3LYP method and good agreement with experimental data was shown. The development and investigation of new pyrrolo[3,4-c]pyridine derivatives are important due to their promising fluorescent properties and potential for use in physiological applications.


2019 ◽  
Vol 26 (6) ◽  
pp. 435-448
Author(s):  
Priyanka Biswas ◽  
Dillip K. Sahu ◽  
Kalyanasis Sahu ◽  
Rajat Banerjee

Background: Aminoacyl-tRNA synthetases play an important role in catalyzing the first step in protein synthesis by attaching the appropriate amino acid to its cognate tRNA which then transported to the growing polypeptide chain. Asparaginyl-tRNA Synthetase (AsnRS) from Brugia malayi, Leishmania major, Thermus thermophilus, Trypanosoma brucei have been shown to play an important role in survival and pathogenesis. Entamoeba histolytica (Ehis) is an anaerobic eukaryotic pathogen that infects the large intestines of humans. It is a major cause of dysentery and has the potential to cause life-threatening abscesses in the liver and other organs making it the second leading cause of parasitic death after malaria. Ehis-AsnRS has not been studied in detail, except the crystal structure determined at 3 Å resolution showing that it is primarily α-helical and dimeric. It is a homodimer, with each 52 kDa monomer consisting of 451 amino acids. It has a relatively short N-terminal as compared to its human and yeast counterparts. Objective: Our study focusses to understand certain structural characteristics of Ehis-AsnRS using biophysical tools to decipher the thermodynamics of unfolding and its binding properties. Methods: Ehis-AsnRS was cloned and expressed in E. coli BL21DE3 cells. Protein purification was performed using Ni-NTA affinity chromatography, following which the protein was used for biophysical studies. Various techniques such as steady-state fluorescence, quenching, circular dichroism, differential scanning fluorimetry, isothermal calorimetry and fluorescence lifetime studies were employed for the conformational characterization of Ehis-AsnRS. Protein concentration for far-UV and near-UV circular dichroism experiments was 8 µM and 20 µM respectively, while 4 µM protein was used for the rest of the experiments. Results: The present study revealed that Ehis-AsnRS undergoes unfolding when subjected to increasing concentration of GdnHCl and the process is reversible. With increasing temperature, it retains its structural compactness up to 45ºC before it unfolds. Steady-state fluorescence, circular dichroism and hydrophobic dye binding experiments cumulatively suggest that Ehis-AsnRS undergoes a two-state transition during unfolding. Shifting of the transition mid-point with increasing protein concentration further illustrate that dissociation and unfolding processes are coupled indicating the absence of any detectable folded monomer. Conclusion: This article indicates that GdnHCl induced denaturation of Ehis-AsnRS is a two – state process and does not involve any intermediate; unfolding occurs directly from native dimer to unfolded monomer. The solvent exposure of the tryptophan residues is biphasic, indicating selective quenching. Ehis-AsnRS also exhibits a structural as well as functional stability over a wide range of pH.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Palaniyappan Nagarasu ◽  
Anu Kundu ◽  
Vijay Thiruvenkatam ◽  
Raghavaiah Pallepogu ◽  
Philip Philip Anthony ◽  
...  

A series of stimuli-responsive AIEgens of tetraphenylethyelene (TPE) fused Imidazole derivatives (1-7) were synthesized and explored their substituents controlled fluorescent properties in the solid state. The structure of the synthesized...


2014 ◽  
Vol 472 ◽  
pp. 603-606
Author(s):  
Xu Wu ◽  
Hong Hua Xiao ◽  
Ji Juan Wang ◽  
Xiao Xuan Xie ◽  
Jia Wei Lin ◽  
...  

A novel series of brush-like amphiphilic statistical tripolymers were designed and prepared by polymerization of amphiphilic macromonomer 2-(acrylamido)-dodecane sulfonic acid (AMC12S, 10 to 90 mol %), with hindrance units sodium p-styrenesulfonate (SSS, 0 to 5 mol %), and 2-(acrylamido)- 2-methylpro-panesulfonic acid (AMPS). The self-assembly behaviors of these tripolymers were investigated using steady-state fluorescence, and the increase of amphiphilic units results in a decrease of microdomain polarity and polymer concentrations for assembly, while the increase of hindrance units leads little change of microdomain polarity.


Sign in / Sign up

Export Citation Format

Share Document