scholarly journals Real-world measurement and mechanical-analysis-based verification of NO<sub><i>x</i></sub> and CO<sub>2</sub> emissions from an in-use heavy-duty vehicle

2021 ◽  
Vol 14 (3) ◽  
pp. 2115-2126
Author(s):  
Hiroo Hata ◽  
Kazuo Kokuryo ◽  
Takehiko Ogata ◽  
Masahiko Kugata ◽  
Koichi Yanai ◽  
...  

Abstract. A portable emission measurement system (PEMS) was used to measure the real-world driving emissions pertaining to a Japanese middle-sized heavy-duty vehicle. The testing was performed with the vehicle being driven in the metropolitan area of Tokyo in four seasons (January, June, August, and November) to analyze the seasonal dependence of NOx and CO2 emissions. The experimental results indicated that the amount of NOx emissions was particularly high in the cold season owing to the slow starting of the NOx after-treatment systems, which is to say the exhaust gas recirculation and urea-selective-catalytic-reduction systems, under low-ambient-temperature conditions. In real-world driving, a high acceleration pattern was observed in the low-speed region which is not considered in the world harmonized vehicle cycle, which is the worldwide official driving mode in the chassis dynamometer experiment. Finally, the transient emission tables for NOx and CO2 were constructed based on the PEMS measurement results and the classical mechanic theory. The constructed tables replicated well the experimental results in all the considered conditions involving different ambient temperatures and locations. The proposed approach can be used to evaluate emission inventories in the future.

2020 ◽  
Author(s):  
Hiroo Hata ◽  
Kazuo Kokuryo ◽  
Takehiko Ogata ◽  
Masahiko Kugata ◽  
Koichi Yanai ◽  
...  

Abstract. A portable emission measurement system (PEMS) was used to measure the real-world driving emissions pertaining to a Japanese middle-sized heavy-duty vehicle. The testing was performed with the vehicle being driven in the metropolitan area of Tokyo in four seasons (January, June, August, and November) to analyze the seasonal dependence of NOx and CO2 emissioans. The experimental results indicated that the amount of NOx emissions was particularly high in the cold season, owing to the slow starting of the NOx detoxification systems, that is, the exhaust gas recirculation and urea-selective-catalytic-reduction systems, under low ambient temperature conditions. In the real-world driving, a high acceleration pattern was observed in the low-speed region, which is not considered in the world harmonized vehicle cycle, which is the worldwide official driving mode in the chassis dynamometer experiment. Finally, the transient emission tables for NOx and CO2 were constructed based on the PEMS measurement results and the classical mechanic theory. The constructed tables well replicated the experimental results in all the considered conditions involving different ambient temperatures and locations. The proposed approach can be used to evaluate emission inventories in the future.


2021 ◽  
Vol 11 (21) ◽  
pp. 10055
Author(s):  
Ricardo Suarez-Bertoa ◽  
Roberto Gioria ◽  
Tommaso Selleri ◽  
Velizara Lilova ◽  
Anastasios Melas ◽  
...  

The development and utilization of a series of after-treatment devices in modern vehicles has led to an increase in emissions of NH3 and/or N2O with respect to the past. N2O is a long-lived greenhouse gas and an ozone-depleting substance, while NH3 is a precursor of secondary aerosols in the atmosphere. Certain regions, e.g., the EU and the USA, have introduced limits to the emissions of NH3 or N2O for vehicles tested in the laboratory. However, due to the lack of on-board systems that allow for the measurement of these compounds when the regulations were developed, these vehicles’ real-world emissions have not been regulated. This work evaluates on-board systems that could allow measuring real-world emissions of NH3 and N2O from heavy-duty vehicles. In particular, emissions of NH3 or N2O from a Euro VI Step D urban/interurban bus fueled with Compressed Natural Gas were measured using the HORIBA’s OBS-ONE-XL, which is based on a specifically developed technique called Infrared Laser Absorption Modulation, and uses a Quantum Cascade Laser as a light source. They were also measured using the PEMS-LAB, which is a more conventional FTIR-based system. Emissions were measured under real-world driving conditions on the road and in a climatic test cell at different ambient temperatures. For most of the conditions tested, the on-board systems correlated well with a laboratory-grade FTIR used as reference. In addition, a good correlation with R2 > 0.9 was found for the N2O concentrations measured by OBS-ONE-XL and PEMS-LAB during on-road testing.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 535 ◽  
Author(s):  
Christos Keramydas ◽  
Leonidas Ntziachristos ◽  
Christos Tziourtzioumis ◽  
Georgios Papadopoulos ◽  
Ting-Shek Lo ◽  
...  

Heavy-duty diesel trucks (HDDTs) comprise a key source of road transport emissions and energy consumption worldwide mainly due to the growth of road freight traffic during the last two decades. Addressing their air pollutant and greenhouse gas emissions is therefore required, while accurate emission factors are needed to logistically optimize their operation. This study characterizes real-world emissions and fuel consumption (FC) of HDDTs and investigates the factors that affect their performance. Twenty-two diesel-fueled, Euro IV to Euro VI, HDDTs of six different manufacturers were measured in the road network of the Hong Kong metropolitan area, using portable emission measurement systems (PEMS). The testing routes included urban, highway and mixed urban/highway driving. The data collected corresponds to a wide range of driving, operating, and ambient conditions. Real-world distance- and energy-based emission levels are presented in a comparative manner to capture the effect of after-treatment technologies and the role of the evolution of Euro standards on emissions performance. The emission factors’ uncertainty is analyzed. The impact of speed, road grade and vehicle weight loading on FC and emissions is investigated. An analysis of diesel particulate filter (DPF) regenerations and ammonia (NH3) slip events are presented along with the study of Nitrous oxide (N2O) formation. The results reveal deviations of real-world HDDTs emissions from emission limits, as well as the significant impact of different operating and driving factors on their performance. The occasional high levels of N2O emissions from selective catalytic reduction equipped HDDTs is also revealed, an issue that has not been thoroughly considered so far.


Sign in / Sign up

Export Citation Format

Share Document