scholarly journals Retrieval of atmospheric CO<sub>2</sub> vertical profiles from ground-based near-infrared spectra

2020 ◽  
Author(s):  
Sébastien Roche ◽  
Kimberly Strong ◽  
Debra Wunch ◽  
Joseph Mendonca ◽  
Colm Sweeney ◽  
...  

Abstract. We evaluate vertical profile retrievals of CO2 from 0.02 cm−1 resolution ground-based near-infrared solar absorption spectra with the GFIT2 algorithm, using improved spectroscopic linelists and line shapes. With these improvements, CO2 profiles were obtained from sequential retrievals in five spectral windows with different vertical sensitivities. A sensitivity study using synthetic spectra shows that the leading source of uncertainty in the retrieved CO2 profiles is the error in the a priori temperature profile, even with 3-hourly reanalysis a priori profiles. A 2 °C error in the temperature profile in the lower troposphere between 0.6 and 0.85 atm causes deviations in the retrieved CO2 profiles that are larger than the typical vertical variations of CO2. To distinguish the effect of errors in the a priori meteorology and trace gas concentration profiles from those in the instrument alignment and spectroscopic parameters, we retrieve CO2 profiles from atmospheric spectra while using an a priori built from coincident AirCore, radiosonde, and surface in situ measurements at the Lamont, Oklahoma (USA) Total Carbon Column Observing Network station. In those cases, the deviations in retrieved CO2 profiles are also larger than typical vertical variations of CO2, suggesting that remaining errors in the forward model limit the accuracy of the retrieved profiles. Implementing a temperature retrieval or correction, and quantifying and modeling an imperfect instrument alignment, are critical to improve CO2 profile retrievals. Without significant advances in modeling imperfect instrument alignment, and improvements in the accuracy of the temperature profile, the CO2 profile retrieval with GFIT2 presents no clear advantage over scaling retrievals for the purpose of ascertaining the total column.

2021 ◽  
Vol 14 (4) ◽  
pp. 3087-3118
Author(s):  
Sébastien Roche ◽  
Kimberly Strong ◽  
Debra Wunch ◽  
Joseph Mendonca ◽  
Colm Sweeney ◽  
...  

Abstract. We evaluate vertical profile retrievals of CO2 from 0.02 cm−1 resolution ground-based near-infrared solar absorption spectra with the GFIT2 algorithm, using improved spectroscopic line lists and line shapes. With these improvements, CO2 profiles were obtained from sequential retrievals in five spectral windows with different vertical sensitivities using synthetic and real spectra. A sensitivity study using synthetic spectra shows that the leading source of uncertainty in the retrieved CO2 profiles is the error in the a priori temperature profile, even with 3-hourly reanalysis a priori profiles. A 2 ∘C error in the temperature profile in the lower troposphere between 0.6 and 0.85 atm causes deviations in the retrieved CO2 profiles that are larger than the typical vertical variations of CO2. To distinguish the effect of errors in the a priori meteorology and trace gas concentration profiles from those in the instrument alignment and spectroscopic parameters, we retrieve CO2 profiles from atmospheric spectra while using an a priori profile built from coincident AirCore, radiosonde, and surface in situ measurements at the Lamont, Oklahoma (USA), Total Carbon Column Observing Network station. In those cases, the deviations in retrieved CO2 profiles are also larger than typical vertical variations of CO2, suggesting that remaining errors in the forward model limit the accuracy of the retrieved profiles. Implementing a temperature retrieval or correction and quantifying and modeling an imperfect instrument alignment are critical to improve CO2 profile retrievals. Without significant advances in modeling imperfect instrument alignment, and improvements in the accuracy of the temperature profile, the CO2 profile retrieval with GFIT2 presents no clear advantage over scaling retrievals for the purpose of ascertaining the total column.


2017 ◽  
Author(s):  
Chengzhi Xing ◽  
Cheng Liu ◽  
Shanshan Wang ◽  
Ka Lok Chan ◽  
Yang Gao ◽  
...  

Abstract. Ground based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China during May 2016 to investigate the summertime atmospheric pollutants vertical distribution. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurement using the Heidelberg Profile (HeiPro) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. MAX-DOAS measured tropospheric NO2Vertical Column Densities (VCDs) show a good agreement with OMI satellite observations with Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height, horizontal and vertical wind fields information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground and upper altitudes are not directly related to horizontal and vertical transportations. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near to the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.


2012 ◽  
Vol 5 (7) ◽  
pp. 1627-1635 ◽  
Author(s):  
C. Petri ◽  
T. Warneke ◽  
N. Jones ◽  
T. Ridder ◽  
J. Messerschmidt ◽  
...  

Abstract. Throughout the last few years solar absorption Fourier Transform Spectrometry (FTS) has been further developed to measure the total columns of CO2 and CH4. The observations are performed at high spectral resolution, typically at 0.02 cm−1. The precision currently achieved is generally better than 0.25%. However, these high resolution instruments are quite large and need a dedicated room or container for installation. We performed these observations using a smaller commercial interferometer at its maximum possible resolution of 0.11 cm−1. The measurements have been performed at Bremen and have been compared to observations using our high resolution instrument also situated at the same location. The high resolution instrument has been successfully operated as part of the Total Carbon Column Observing Network (TCCON). The precision of the low resolution instrument is 0.32% for XCO2 and 0.46% for XCH4. A comparison of the measurements of both instruments yields an average deviation in the retrieved daily means of &amp;leq;0.2% for CO2. For CH4 an average bias between the instruments of 0.47% was observed. For test cases, spectra recorded by the high resolution instrument have been truncated to the resolution of 0.11 cm−1. This study gives an offset of 0.03% for CO2 and 0.26% for CH4. These results indicate that for CH4 more than 50% of the difference between the instruments results from the resolution dependent retrieval. We tentatively assign the offset to an incorrect a-priori concentration profile or the effect of interfering gases, which may not be treated correctly.


2017 ◽  
Author(s):  
David F. Pollard ◽  
Vanessa Sherlock ◽  
John Robinson ◽  
Nicholas M. Deutscher ◽  
Brian Connor ◽  
...  

Abstract. In this paper we describe the retrievals of atmospheric trace gases from near infrared, high resolution solar absorption spectroscopy measurements at the Lauder atmospheric research station in New Zealand and submitted to the Total Carbon Column Observing Network (TCCON) archive. The Lauder site (45.034°S, 169.68°E, 370 masl) is located within a sparsely populated region of the South Island of New Zealand, and is sheltered from the prevailing wind direction by the Southern Alps, which gives the site a high number of clear-sky days and an airmass that is largely unmodified by regional anthropogenic sources. The Lauder TCCON archive consists of data from two instruments; a Bruker IFS 120HR from June 2004 to February 2010 and a Bruker IFS 125HR from February 2010 to present. The bias between the two instrument is assessed to be 0.068% for CO2. Since measurements using the IFS 125HR began, the standard deviation about the hourly mean has been better than 0.1% for 96.81% of CO2 column retrievals. The retrievals have been calibrated against in situ airborne measurements to correct for biases and provide traceability to the World Meteorological Organisation (WMO) scales with an accuracy of 0.1% for CO2. The Lauder TCCON time series of retrieved dry-air mole fractions of CO2, CH4, N2O, HF, H2O, HDO and CO are available from the TCCON data archive. The DOIs are: doi:10.14291/tccon.ggg2014.lauder01.R0/1149293 for the IFS 120HR data doi:10.14291/tccon.ggg2014.lauder02.R0/1149298 for the IFS 125HR data.


2014 ◽  
Vol 7 (12) ◽  
pp. 4081-4101 ◽  
Author(s):  
A. Ostler ◽  
R. Sussmann ◽  
M. Rettinger ◽  
N. M. Deutscher ◽  
S. Dohe ◽  
...  

Abstract. Dry-air column-averaged mole fractions of methane (XCH4) retrieved from ground-based solar Fourier transform infrared (FTIR) measurements provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink-inversions. In this context, Sussmann et al. (2013) have shown that midinfrared (MIR) soundings from the Network for the Detection of Atmospheric Composition Change (NDACC) can be combined with near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON) without the need to apply an overall intercalibration factor. However, in spite of efforts to reduce a priori impact, some residual seasonal biases were identified, and the reasons behind remained unclear. In extension to this previous work, which was based on multiannual quasi-coincident MIR and NIR measurements from the stations Garmisch (47.48° N, 11.06° E, 743 m a.s.l.) and Wollongong (34.41° S, 150.88° E, 30 m a.s.l.), we now investigate upgraded retrievals with longer temporal coverage and include three additional stations (Ny-Ålesund, 78.92° N, 11.93° E, 20 m a.s.l.; Karlsruhe, 49.08° N, 8.43° E, 110 m a.s.l.; Izaña, 28.31° N, 16.45° W, 2.370 m a.s.l.). Our intercomparison results (except for Ny-Ålesund) confirm that there is no overall bias between MIR and NIR XCH4 retrievals, and all MIR and NIR time series reveal a quasi-periodic seasonal bias for all stations, except for Izaña. We find that dynamical variability causes MIR–NIR differences of up to ~ 30 ppb (parts per billion) for Ny-Ålesund, ~ 20 ppb for Wollongong, ~ 18 ppb for Garmisch, and ~ 12 ppb for Karlsruhe. The mechanisms behind this variability are elaborated via two case studies, one dealing with stratospheric subsidence induced by the polar vortex at Ny-Ålesund and the other with a deep stratospheric intrusion event at Garmisch. Smoothing effects caused by the dynamical variability during these events are different for MIR and NIR retrievals depending on the altitude of the perturbation area. MIR retrievals appear to be more realistic in the case of stratospheric subsidence, while NIR retrievals are more accurate in the case of stratosphere–troposphere exchange (STE) in the upper troposphere/lower stratosphere (UTLS) region. About 35% of the FTIR measurement days at Garmisch are impacted by STE, and about 23% of the measurement days at Ny-Ålesund are influenced by polar vortex subsidence. The exclusion of data affected by these dynamical situations resulted in improved agreement of MIR and NIR seasonal cycles for Ny-Ålesund and Garmisch. We found that dynamical variability is a key factor in constraining the accuracy of MIR and NIR seasonal cycles. To mitigate this impact it is necessary to use more realistic a priori profiles that take these dynamical events into account (e.g., via improved models), and/or to improve the FTIR retrievals to achieve a more uniform sensitivity at all altitudes (possibly including profile retrievals for the TCCON data).


2012 ◽  
Vol 5 (1) ◽  
pp. 245-269 ◽  
Author(s):  
C. Petri ◽  
T. Warneke ◽  
N. Jones ◽  
T. Ridder ◽  
J. Messerschmidt ◽  
...  

Abstract. Throughout the last few years solar absorption Fourier Transform Spectrometry (FTS) has been further developed to measure the total columns of CO2 and CH4. The observations are performed at high spectral resolution, typically at 0.02 cm−1. The precision achieved is actually generally better than 0.25%. However, these high resolution instruments are quite large and need a dedicated room or container for installation. We performed these observations using a smaller commercial interferometer at its maximum possible resolution of 0.11 cm−1. The measurements have been performed at Bremen and have been compared to observations using our high resolution instrument also situated at the same location. The high resolution instrument has been successfully operated as part of the Total Carbon Column Observing Network (TCCON). The precision of the low resolution instrument is 0.32% for XCO2 and 0.46% for XCH4. A comparison of the measurements of both instruments yields an average deviation in the retrieved daily means of &amp;leq;0.2% for CO2. For CH4 an average bias between the instruments of 0.46% was observed. For test cases, spectra recorded by the high resolution instrument have been truncated to the resolution of 0.11 cm−1. This study gives an offset of 0.03% for CO2 and 0.26% for CH4. These results indicate that for CH4 more than 50% of the difference between the instruments results from the resolution dependant retrieval. We tentatively assign the offset to an incorrect a-priori concentration profile or the effect of interfering gases, which may not be treated correctly.


2010 ◽  
Vol 3 (4) ◽  
pp. 3987-4007
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. Using spectral H2O signatures in the 4500–4700 cm−1 region one can well distinguish lower from middle/upper tropospheric water vapour concentrations. The vertical resolution is about 3 and 6 km, for the lower and middle/upper troposphere, respectively. We document the quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. The agreement of both techniques is very satisfactory. Due to the long-term strategy of the network and the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different time scales and altitudes.


2014 ◽  
Vol 7 (3) ◽  
pp. 2071-2106
Author(s):  
O. E. García ◽  
M. Schneider ◽  
F. Hase ◽  
T. Blumenstock ◽  
E. Sepúlveda ◽  
...  

Abstract. This study examines the possibility of ground-based remote sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier Transform InfraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high resolution spectra with a theoretical precision of about 2% and 5% in the 3040 cm−1 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products), using a 8 year FTIR time series (2005–2012) taken at the subtropical ozone super-site of the Izaña Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wavenumber regions, the 3040 cm−1 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90% and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 cm−1 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN 2012) of both regions. Between the 1000 cm−1 and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near infrared retrievals can monitor the long-term OTC evolution in consistency to the 1000 cm−1reference data.


2010 ◽  
Vol 3 (6) ◽  
pp. 1785-1795 ◽  
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.


2013 ◽  
Vol 6 (2) ◽  
pp. 397-418 ◽  
Author(s):  
R. Sussmann ◽  
A. Ostler ◽  
F. Forster ◽  
M. Rettinger ◽  
N. M. Deutscher ◽  
...  

Abstract. We present the first intercalibration of dry-air column-averaged mole fractions of methane (XCH4) retrieved from solar Fourier transform infrared (FTIR) measurements of the Network for the Detection of Atmospheric Composition Change (NDACC) in the mid-infrared (MIR) versus near-infrared (NIR) soundings from the Total Carbon Column Observing Network (TCCON). The study uses multi-annual quasi-coincident MIR and NIR measurements from the stations Garmisch, Germany (47.48° N, 11.06° E, 743 m a.s.l.), and Wollongong, Australia (34.41° S, 150.88° E, 30 m a.s.l.). Direct comparison of the retrieved MIR and NIR XCH4 time series for Garmisch shows a quasi-periodic seasonal bias leading to a standard deviation (stdv) of the difference time series (NIR–MIR) of 7.2 ppb. After reducing time-dependent a priori impact by using realistic site- and time-dependent ACTM-simulated profiles as a common prior, the seasonal bias is reduced (stdv = 5.2 ppb). A linear fit to the MIR/NIR scatter plot of monthly means based on same-day coincidences does not show a y-intercept that is statistically different from zero, and the MIR/NIR intercalibration factor is found to be close to ideal within 2-σ uncertainty, i.e. 0.9996(8). The difference time series (NIR–MIR) do not show a significant trend. The same basic findings hold for Wollongong. In particular an overall MIR/NIR intercalibration factor close to the ideal 1 is found within 2-σ uncertainty. At Wollongong the seasonal cycle of methane is less pronounced and corresponding smoothing errors are not as significant, enabling standard MIR and NIR retrievals to be used directly, without correction to a common a priori. Our results suggest that it is possible to set up a harmonized NDACC and TCCON XCH4 data set which can be exploited for joint trend studies, satellite validation, or the inverse modeling of sources and sinks.


Sign in / Sign up

Export Citation Format

Share Document