scholarly journals The Total Carbon Column Observing Network Site Description for Lauder, New Zealand

Author(s):  
David F. Pollard ◽  
Vanessa Sherlock ◽  
John Robinson ◽  
Nicholas M. Deutscher ◽  
Brian Connor ◽  
...  

Abstract. In this paper we describe the retrievals of atmospheric trace gases from near infrared, high resolution solar absorption spectroscopy measurements at the Lauder atmospheric research station in New Zealand and submitted to the Total Carbon Column Observing Network (TCCON) archive. The Lauder site (45.034°S, 169.68°E, 370 masl) is located within a sparsely populated region of the South Island of New Zealand, and is sheltered from the prevailing wind direction by the Southern Alps, which gives the site a high number of clear-sky days and an airmass that is largely unmodified by regional anthropogenic sources. The Lauder TCCON archive consists of data from two instruments; a Bruker IFS 120HR from June 2004 to February 2010 and a Bruker IFS 125HR from February 2010 to present. The bias between the two instrument is assessed to be 0.068% for CO2. Since measurements using the IFS 125HR began, the standard deviation about the hourly mean has been better than 0.1% for 96.81% of CO2 column retrievals. The retrievals have been calibrated against in situ airborne measurements to correct for biases and provide traceability to the World Meteorological Organisation (WMO) scales with an accuracy of 0.1% for CO2. The Lauder TCCON time series of retrieved dry-air mole fractions of CO2, CH4, N2O, HF, H2O, HDO and CO are available from the TCCON data archive. The DOIs are: doi:10.14291/tccon.ggg2014.lauder01.R0/1149293 for the IFS 120HR data doi:10.14291/tccon.ggg2014.lauder02.R0/1149298 for the IFS 125HR data.

2017 ◽  
Vol 9 (2) ◽  
pp. 977-992 ◽  
Author(s):  
David F. Pollard ◽  
Vanessa Sherlock ◽  
John Robinson ◽  
Nicholas M. Deutscher ◽  
Brian Connor ◽  
...  

Abstract. In this paper we describe the retrievals of atmospheric trace gases from near-infrared, high-resolution solar absorption spectroscopy measurements at the Lauder atmospheric research station in New Zealand and submitted to the Total Carbon Column Observing Network (TCCON) archive. The Lauder site (45.034° S, 169.68° E, 370 m a.s.l.) is located within a sparsely populated region of the South Island of New Zealand and is sheltered from the prevailing wind direction by the Southern Alps, which gives the site a high number of clear-sky days and an air mass that is largely unmodified by regional anthropogenic sources. The Lauder TCCON archive consists of data from two instruments: a Bruker IFS 120HR from June 2004 to February 2010 and a Bruker IFS 125HR from February 2010 to present. The bias between the two instruments is assessed to be 0.068 % for CO2. Since measurements using the IFS 125HR began, the SD about the hourly mean has been better than 0.1 % for 96.81 % of CO2 column retrievals. The retrievals have been calibrated against in situ airborne measurements to correct for biases and provide traceability to the World Meteorological Organization (WMO) scales with an accuracy of 0.1 % for CO2. The Lauder TCCON time series of retrieved dry-air mole fractions of CO2, CH4, N2O, HF, H2O, HDO and CO are available from the TCCON data archive. The DOIs arehttps://doi.org/10.14291/tccon.ggg2014.lauder01.R0/1149293 for the IFS 120HR datahttps://doi.org/10.14291/tccon.ggg2014.lauder02.R0/1149298 for the IFS 125HR data.


2020 ◽  
Author(s):  
David F. Pollard ◽  
Dan Smale ◽  
Hue Tran ◽  
Jamie McGaw ◽  
Frank Hase ◽  
...  

<p>During 2016 and again during 2019 through 2020 an EM27/SUN portable near infrared solar absorption Fourier Transform Spectrometer of the Karlsruhe Institute of Technology was transported first to Lauder, New Zealand (45.034S, 169.68E, alt. 370 m) and then to the Arrival Heights laboratory, Ross Island Antarctica (77.82S, 166.65E, 200 m). On the first occasion the EM27/SUN made the first ever near infrared solar absorption retrievals of carbon dioxide and methane in Antarctica over a period of two weeks. The second deployment had the aim of making retrievals in Antarctica throughout the 2019-2020 Austral summer.</p><p>We report on the comparison of retrievals of carbon dioxide and methane from the EM27 spectra with those made by the Total Carbon Column Observing Network (TCCON) stations at both Karlsruhe and Lauder and compare with similar comparisons made throughout the Collaborative Carbon Column Observing Network (COCCON), as well as the latitudinal extension of these measurements to Antarctica.</p><p>Further comparisons with observations from TROPOMI instrument on the Sentinel 5 precursor satellite will be discussed.</p>


2010 ◽  
Vol 3 (4) ◽  
pp. 3987-4007
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. Using spectral H2O signatures in the 4500–4700 cm−1 region one can well distinguish lower from middle/upper tropospheric water vapour concentrations. The vertical resolution is about 3 and 6 km, for the lower and middle/upper troposphere, respectively. We document the quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. The agreement of both techniques is very satisfactory. Due to the long-term strategy of the network and the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different time scales and altitudes.


2014 ◽  
Vol 7 (3) ◽  
pp. 2071-2106
Author(s):  
O. E. García ◽  
M. Schneider ◽  
F. Hase ◽  
T. Blumenstock ◽  
E. Sepúlveda ◽  
...  

Abstract. This study examines the possibility of ground-based remote sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier Transform InfraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high resolution spectra with a theoretical precision of about 2% and 5% in the 3040 cm−1 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products), using a 8 year FTIR time series (2005–2012) taken at the subtropical ozone super-site of the Izaña Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wavenumber regions, the 3040 cm−1 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90% and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 cm−1 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN 2012) of both regions. Between the 1000 cm−1 and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near infrared retrievals can monitor the long-term OTC evolution in consistency to the 1000 cm−1reference data.


2010 ◽  
Vol 3 (6) ◽  
pp. 1785-1795 ◽  
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.


2017 ◽  
Vol 10 (7) ◽  
pp. 2397-2411 ◽  
Author(s):  
Matthias Buschmann ◽  
Nicholas M. Deutscher ◽  
Mathias Palm ◽  
Thorsten Warneke ◽  
Christine Weinzierl ◽  
...  

Abstract. Solar absorption spectroscopy in the near infrared has been performed in Ny-Ålesund (78.9° N, 11.9° E) since 2002; however, due to the high latitude of the site, the sun is below the horizon from October to March (polar night) and no solar absorption measurements are possible. Here we present a novel method of retrieving the total column dry-air mole fractions (DMFs) of CO2 and CH4 using moonlight in winter. Measurements have been taken during the polar nights from 2012 to 2016 and are validated with TCCON (Total Carbon Column Observing Network) measurements by solar and lunar absorption measurements on consecutive days and nights during spring and autumn. The complete seasonal cycle of the DMFs of CO2 and CH4 is presented and a precision of up to 0.5 % is achieved. A comparison of solar and lunar measurements on consecutive days during day and night in March 2013 yields non-significant biases of 0. 66 ± 4. 56 ppm for xCO2 and −1. 94 ± 20. 63 ppb for xCH4. Additionally a model comparison has been performed with data from various reanalysis models.


2017 ◽  
Vol 10 (7) ◽  
pp. 2627-2643 ◽  
Author(s):  
Wei Wang ◽  
Yuan Tian ◽  
Cheng Liu ◽  
Youwen Sun ◽  
Wenqing Liu ◽  
...  

Abstract. A ground-based high-resolution Fourier transform spectrometer (FTS) station has been established in Hefei, China to remotely measure CO2, CO and other greenhouse gases based on near-infrared solar absorption spectra. Total column measurements of atmospheric CO2 and CO were successfully obtained from July 2014 to April 2016. The spectra collected with an InSb detector in the first year were compared with those collected by an InGaAs detector from July 2015, demonstrating that InGaAs spectra have better signal-to-noise ratios and rms of spectral fitting residuals relative to InSb spectra. Consequently, the measurement precision of the retrieved XCO2 and XCO for InGaAs spectra is superior to InSb spectra, with about 0.04 and 0.09 % for XCO2, and 1.07 and 2.00 % for XCO within clear-sky days respectively. Daily and monthly averages of column-averaged dry air mole fraction of CO2 show a clear seasonal cycle, while the daily and monthly averages of XCO displayed no seasonal variation. Also, we analysed the relationship of the anomalies of XCO and XCO2, found that the correlations are only observable for individual days, and the data under different prevailing wind conditions during the observations displayed weak correlation. The observations based on the high-resolution FTS were also compared with the temporally coinciding measurements taken with a low-resolution solar FTS instrument, the EM27/SUN. Ratioing the daily averaged XCO2 of EM27 and FTS gives an overall calibration factor of 0.996 ± 0.001. We also compared ground-based observations from the Tsukuba TCCON station with our observations, the results showing that the variation in phase and seasonal amplitude of XCO2 are similar to our results, but the variation of XCO in Tsukuba is quite different from our data in Hefei. To further evaluate our retrieved data, we made use of satellite measurements. The direct comparison of our observations with the Greenhouse Gases Observing Satellite (GOSAT) data shows good agreement of daily median XCO2, with a bias of −0.52 ppm and standard deviation of 1.63 ppm. The correlation coefficient (R2) is 0.79 for daily median XCO2 between our FTS and GOSAT observations. Daily median Orbiting Carbon Observatory 2 (OCO-2) data produce a positive bias of 0.81 ppm and standard deviation of 1.73 ppm relative to our ground-based data. Our daily median XCO2 also show strong correlation with OCO-2 data, with correlation coefficient (R2) of 0.83. Although there were a limited number of data during the observations due to instrument downtime and adverse weather, the results confirm the suitability of the observatory for ground-based long-term measurements of greenhouse gases with high precision and accuracy, and fulfil the requirements of the Total Carbon Column Observing Network (TCCON).


2006 ◽  
Vol 6 (7) ◽  
pp. 1913-1925 ◽  
Author(s):  
C. Junker ◽  
S. G. Jennings ◽  
H. Cachier

Abstract. Aerosol light attenuation on quartz fibre filters has been measured since February 1989 at the Mace Head Atmospheric Research station near Carna, Co. Galway, Ireland, using an Aethalometer. The frequency of occurrence of the hourly averaged aerosol absorption data is found to be bimodally distributed. The two modes result from clean marine air and anthropogenically polluted continental air both being advected to the station dependent on the prevailing wind direction. The hourly averages of the marine portion of the aerosol light absorption are found to follow closely a lognormal distribution with a geometric mean of 0.310 Mm-1. The hourly averages of continental sector aerosol absorption are neither normally nor lognormally distributed and have an arithmetic mean of 6.36 Mm-1, indicating the presence of anthropogenic sources for BC east of the Mace Head station. The time series of the monthly averaged attenuation coefficient σatt of both marine and continental sector aerosol shows an increase from 1989 to 1997 and a levelling off thereafter. The monthly maximum of marine sector σatt is found in May. Trend and seasonal characteristics of the clean marine aerosol attenuation coefficients observed at Mace Head appear to be driven by meteorological factors, as indicated by rainfall data and by trends in the North Atlantic Oscillation (NAO) indices. The observed increasing trends of the continental sector σatt from 1989 up to 1997 are possibly related to changes in BC emissions over Ireland, calculated from UNSTAT (2002) fuel consumption data.


2014 ◽  
Vol 7 (9) ◽  
pp. 3071-3084 ◽  
Author(s):  
O. E. García ◽  
M. Schneider ◽  
F. Hase ◽  
T. Blumenstock ◽  
E. Sepúlveda ◽  
...  

Abstract. This study examines the possibility of ground-based remote-sensing ozone total column amounts (OTC) from spectral signatures at 3040 and 4030 cm−1. These spectral regions are routinely measured by the NDACC (Network for the Detection of Atmospheric Composition Change) ground-based FTIR (Fourier transform infraRed) experiments. In addition, they are potentially detectable by the TCCON (Total Carbon Column Observing Network) FTIR instruments. The ozone retrieval strategy presented here estimates the OTC from NDACC FTIR high-resolution spectra with a theoretical precision of about 2 and 5% in the 3040 and 4030 cm−1 regions, respectively. Empirically, these OTC products are validated by inter-comparison to FTIR OTC reference retrievals in the 1000 cm−1 spectral region (standard reference for NDACC ozone products), using an 8-year FTIR time series (2005–2012) taken at the subtropical ozone supersite of the Izaña Atmospheric Observatory (Tenerife, Spain). Associated with the weaker ozone signatures at the higher wave number regions, the 3040 and 4030 cm−1 retrievals show lower vertical sensitivity than the 1000 cm−1 retrievals. Nevertheless, we observe that the rather consistent variations are detected: the variances of the 3040 cm−1 and the 4030 cm−1 retrievals agree within 90 and 75%, respectively, with the variance of the 1000 cm−1 standard retrieval. Furthermore, all three retrievals show very similar annual cycles. However, we observe a large systematic difference of about 7% between the OTC obtained at 1000 and 3040 cm−1, indicating a significant inconsistency between the spectroscopic ozone parameters (HITRAN, 2012) of both regions. Between the 1000 cm and the 4030 cm−1 retrieval the systematic difference is only 2–3%. Finally, the long-term stability of the OTC retrievals has also been examined, observing that both near-infrared retrievals can monitor the long-term OTC evolution, consistent with the 1000 cm−1 reference data. These findings demonstrate that recording the solar absorption spectra in the 3000 cm−1 spectral region at high spectral resolution (about 0.005 cm−1) might be useful for TCCON sites. Hence, both NDACC and TCCON ground-based FTIR experiments might contribute to global ozone databases.


2020 ◽  
Author(s):  
Sébastien Roche ◽  
Kimberly Strong ◽  
Debra Wunch ◽  
Joseph Mendonca ◽  
Colm Sweeney ◽  
...  

Abstract. We evaluate vertical profile retrievals of CO2 from 0.02 cm−1 resolution ground-based near-infrared solar absorption spectra with the GFIT2 algorithm, using improved spectroscopic linelists and line shapes. With these improvements, CO2 profiles were obtained from sequential retrievals in five spectral windows with different vertical sensitivities. A sensitivity study using synthetic spectra shows that the leading source of uncertainty in the retrieved CO2 profiles is the error in the a priori temperature profile, even with 3-hourly reanalysis a priori profiles. A 2 °C error in the temperature profile in the lower troposphere between 0.6 and 0.85 atm causes deviations in the retrieved CO2 profiles that are larger than the typical vertical variations of CO2. To distinguish the effect of errors in the a priori meteorology and trace gas concentration profiles from those in the instrument alignment and spectroscopic parameters, we retrieve CO2 profiles from atmospheric spectra while using an a priori built from coincident AirCore, radiosonde, and surface in situ measurements at the Lamont, Oklahoma (USA) Total Carbon Column Observing Network station. In those cases, the deviations in retrieved CO2 profiles are also larger than typical vertical variations of CO2, suggesting that remaining errors in the forward model limit the accuracy of the retrieved profiles. Implementing a temperature retrieval or correction, and quantifying and modeling an imperfect instrument alignment, are critical to improve CO2 profile retrievals. Without significant advances in modeling imperfect instrument alignment, and improvements in the accuracy of the temperature profile, the CO2 profile retrieval with GFIT2 presents no clear advantage over scaling retrievals for the purpose of ascertaining the total column.


Sign in / Sign up

Export Citation Format

Share Document