scholarly journals Importance of the WPL correction for the measurement of small CO<sub>2</sub> fluxes

2021 ◽  
Author(s):  
Katharina Jentzsch ◽  
Julia Boike ◽  
Thomas Foken

Abstract. The WPL (Webb, Pearman, and Leuning) correction is fully accepted to correct trace gas fluxes like CO2 for density fluctuations due to water vapor and temperature fluctuations for open-path gas analysers. It is known that this additive correction can be in the order of magnitude of the actual flux. However, this is hardly ever included in the analysis of data quality. An example from the Arctic shows the problems, because the size of the correction is a multiple of the actual flux. As a general result, we examined and tabulated the magnitude of the WPL correction for carbon dioxide flux as a function of sensible and latent heat flux. Furthermore, we propose a parameter to better estimate possible deficits in data quality and recommend integrating the quality flag derived with this parameter into the general study of small carbon dioxide fluxes.

2021 ◽  
Vol 14 (11) ◽  
pp. 7291-7296
Author(s):  
Katharina Jentzsch ◽  
Julia Boike ◽  
Thomas Foken

Abstract. The WPL (Webb, Pearman, and Leuning) correction is fully accepted to correct trace gas fluxes like CO2 for density fluctuations due to water vapour and temperature fluctuations for open-path gas analysers. It is known that this additive correction can be on the order of magnitude of the actual flux. However, this is hardly ever included in the analysis of data quality. An example from the Arctic shows the problems, because the size of the correction is a multiple of the actual flux. As a general result, we examined and tabulated the magnitude of the WPL correction for carbon dioxide flux as a function of sensible and latent heat flux. Furthermore, we propose a parameter to better estimate possible deficits in data quality and recommend integrating the quality flag derived with this parameter into the general study of small carbon dioxide fluxes.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Katrin Attermeyer ◽  
Joan Pere Casas-Ruiz ◽  
Thomas Fuss ◽  
Ada Pastor ◽  
Sophie Cauvy-Fraunié ◽  
...  

AbstractGlobally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1 mmol m−2 h−1 at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams.


2020 ◽  
Vol 17 (15) ◽  
pp. 4025-4042
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


2018 ◽  
Vol 11 (11) ◽  
pp. 6075-6090 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10 m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut, in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from 4 months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar and wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.


2014 ◽  
Vol 14 (23) ◽  
pp. 13159-13174 ◽  
Author(s):  
S. J. O'Shea ◽  
G. Allen ◽  
M. W. Gallagher ◽  
K. Bower ◽  
S. M. Illingworth ◽  
...  

Abstract. Airborne and ground-based measurements of methane (CH4), carbon dioxide (CO2) and boundary layer thermodynamics were recorded over the Fennoscandian landscape (67–69.5° N, 20–28° E) in July 2012 as part of the MAMM (Methane and other greenhouse gases in the Arctic: Measurements, process studies and Modelling) field campaign. Employing these airborne measurements and a simple boundary layer box model, net regional-scale (~ 100 km) fluxes were calculated to be 1.2 ± 0.5 mg CH4 h−1 m−2 and −350 ± 143 mg CO2 h−1 m−2. These airborne fluxes were found to be relatively consistent with seasonally averaged surface chamber (1.3 ± 1.0 mg CH4 h−1 m−2) and eddy covariance (1.3 ± 0.3 mg CH4 h−1 m−2 and −309 ± 306 mg CO2 h−1 m−2) flux measurements in the local area. The internal consistency of the aircraft-derived fluxes across a wide swath of Fennoscandia coupled with an excellent statistical comparison with local seasonally averaged ground-based measurements demonstrates the potential scalability of such localised measurements to regional-scale representativeness. Comparisons were also made to longer-term regional CH4 climatologies from the JULES (Joint UK Land Environment Simulator) and HYBRID8 land surface models within the area of the MAMM campaign. The average hourly emission flux output for the summer period (July–August) for the year 2012 was 0.084 mg CH4 h−1 m−2 (minimum 0.0 and maximum 0.21 mg CH4 h−1 m−2) for the JULES model and 0.088 mg CH4 h−1 m−2 (minimum 0.0008 and maximum 1.53 mg CH4 h−1 m−2) for HYBRID8. Based on these observations both models were found to significantly underestimate the CH4 emission flux in this region, which was linked to the under-prediction of the wetland extents generated by the models.


2019 ◽  
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes that provides near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold season methane emission representing 54% of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


2013 ◽  
Vol 6 (5) ◽  
pp. 8783-8805 ◽  
Author(s):  
M. Riederer ◽  
A. Serafimovich ◽  
T. Foken

Abstract. Carbon dioxide flux measurements in ecosystem sciences are mostly conducted by eddy covariance technique or the closed chamber method. Also some comparisons have been performed. But there is a lack of detailed assessment of present differences and uncertainties. To determine underlying processes, a ten-day, side-by-side measurement of the net ecosystem exchange with both techniques was evaluated with regard to various atmospheric conditions during the diurnal cycle. It was found that, depending on the particular atmospheric condition, the chamber carbon dioxide flux was either: (i) equal to the carbon dioxide flux measured by the reference method eddy covariance, by day with well developed atmospheric turbulence, (ii) higher, in the afternoon in times of oasis effect, (iii) lower, predominantly at night while large coherent structure fluxes or high wind velocities prevailed, or, (iv) showed less variation in the flux pattern, at night while stable stratification was present. Due to lower chamber carbon dioxide fluxes at night, when respiration forms the net ecosystem exchange, and higher chamber carbon dioxide fluxes in the afternoon, when the ecosystem is still a net carbon sink, there are two complementary aspects resulting in an overestimation of the ecosystem sink capacity by the chamber of 40% in this study.


2018 ◽  
Author(s):  
Brian J. Butterworth ◽  
Brent G. T. Else

Abstract. The Arctic marine environment plays an important role in the global carbon cycle. However, there remain large uncertainties in how sea ice affects air–sea fluxes of carbon dioxide (CO2), partially due to disagreement between the two main methods (enclosure and eddy covariance) for measuring CO2 flux (FCO2). The enclosure method has appeared to produce more credible FCO2 than eddy covariance (EC), but is not suited for collecting long-term, ecosystem-scale flux datasets in such remote regions. Here we describe the design and performance of an EC system to measure FCO2 over landfast sea ice that addresses the shortcomings of previous EC systems. The system was installed on a 10-m tower on Qikirtaarjuk Island – a small rock outcrop in Dease Strait located roughly 35 km west of Cambridge Bay, Nunavut in the Canadian Arctic Archipelago. The system incorporates recent developments in the field of air–sea gas exchange by measuring atmospheric CO2 using a closed-path infrared gas analyzer (IRGA) with a dried sample airstream, thus avoiding the known water vapor issues associated with using open-path IRGAs in low-flux environments. A description of the methods and the results from four months of continuous flux measurements from May through August 2017 are presented, highlighting the winter to summer transition from ice cover to open water. We show that the dried, closed-path EC system greatly reduces the magnitude of measured FCO2 compared to simultaneous open-path EC measurements, and for the first time reconciles EC and enclosure flux measurements over sea ice. This novel EC installation is capable of operating year-round on solar/wind power, and therefore promises to deliver new insights into the magnitude of CO2 fluxes and their driving processes through the annual sea ice cycle.


Author(s):  
Steven K. Schmidt ◽  
Ann E. West

The alpine, while not extensive in global area, has several advantages for trace gas research, particularly the spatial landscape heterogeneity in soil types and plant communities. This variation can be viewed as a “natural experiment,” allowing field measurements under extremes of moisture and temperature. While the atmospheric carbon dioxide (CO2) record at Niwot Ridge extends back to 1968 (chapter 3), and NOAA has done extensive measurements on atmospheric chemistry at the subalpine climate station (e.g., Conway et al. 1994), work on tundra soil-atmosphere interactions were not initiated until recently. In 1992, studies were begun on Niwot Ridge to gain a comprehensive understanding of trace gas fluxes from alpine soils. Our sampling regime was designed to capture the spatial and temporal patterns of trace gas fluxes in the alpine. In addition, we coupled our studies of trace gas fluxes with ongoing studies of nitrogen cycling on Niwot Ridge (Fisk and Schmidt 1995,1996; Fisk et al. 1998; chapter 12). Methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) were studied because of their role in global environmental change and because they could be easily monitored at our remote sites. On a per-molecule basis, CH4 and N2O are much more potent as greenhouse gases than CO2 is (Lashof and Ahuja 1990; Rodhe 1990). In addition, N2O plays a role in ozone depletion in the stratosphere. The global CH4 and N2O budgets are still poorly understood and the relative importance of soils in these budgets is even less clear. For example, estimates of the global soil sink for CH4 range from 9.0 to 55.9 Tg per year (Dörr et al. 1993). This range is large compared with the approximately 30 Tg of excess CH4 that is accumulating in the atmosphere every year. To better assess the role of soil in trace gas budgets, our work focused on investigating landscape patterns of gas fluxes (CH4, N2O, and CO2) and environmental controls on these fluxes.


Sign in / Sign up

Export Citation Format

Share Document