scholarly journals A fiber-coupled laser hygrometer for airborne total water measurement

2014 ◽  
Vol 7 (1) ◽  
pp. 215-223 ◽  
Author(s):  
S. W. Dorsi ◽  
L. E. Kalnajs ◽  
D. W. Toohey ◽  
L. M. Avallone

Abstract. The second-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH-2) is an instrument for the airborne in situ measurement of total water content – the sum of vapor-, liquid- and ice-phase water – in clouds. This compact instrument has been flown on the NSF/NCAR Gulfstream-V aircraft in an underwing canister. It operates autonomously and uses fiber-coupled optics to eliminate the need for a supply of dry compressed gas. In operation, sample air is ingested into a forward-facing sub-isokinetic inlet; this sampling configuration results in particle concentrations that are enhanced relative to ambient and causes greater instrument sensitivity to condensed water particles. Heaters within the inlet vaporize the ingested water particles, and the resulting augmented water vapor mixing ratio is measured by absorption of near-infrared light in a single-pass optical cell. The condensed water content is then determined by subtracting the ambient water vapor content from the total and by accounting for the inertial enhancement of particles into the sampling inlet. The CLH-2 is calibrated in the laboratory over a range of pressures and water vapor mixing ratios; the uncertainty in CLH-2 condensed water retrievals is estimated to be 14.3% to 16.1% (1-σ). A vapor-only laboratory intercomparison with the first-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH) shows agreement within the 2-σ uncertainty bounds of both instruments.

2013 ◽  
Vol 6 (4) ◽  
pp. 7355-7378 ◽  
Author(s):  
S. W. Dorsi ◽  
L. E. Kalnajs ◽  
D. W. Toohey ◽  
L. M. Avallone

Abstract. The second-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH-2) is an instrument for the airborne in situ measurement of total water content – the sum of vapor-, liquid- and ice-phase water – in clouds. This compact instrument has been flown on the NSF/NCAR Gulfstream-V aircraft in an underwing canister. It operates autonomously and uses fiber-coupled optics to eliminate the need for a supply of dry compressed gas. In operation, sample air is ingested into a forward-facing sub-isokinetic inlet; this sampling configuration results in particle concentrations that are enhanced relative to ambient and conveys greater instrument sensitivity to condensed water particles. Heaters within the inlet vaporize the ingested water particles, and the resulting augmented water vapor mixing ratio is measured by absorption of near-infrared light in a single-pass optical cell. The condensed water content is then determined by subtracting the ambient water vapor concentration from the total and by accounting for the inertial enhancement of particles into the sampling inlet. The CLH-2 is calibrated in the laboratory over a range of pressures and water vapor mixing ratios; the uncertainty in CLH-2 condensed water retrievals is estimated to be 14.3% to 16.1% (1-σ). A vapor-only laboratory intercomparison with the first-generation University of Colorado closed-path tunable-diode laser hygrometer (CLH) shows agreement within the 2-σ uncertainty bounds of both instruments.


2007 ◽  
Vol 24 (3) ◽  
pp. 463-475 ◽  
Author(s):  
Sean M. Davis ◽  
A. Gannet Hallar ◽  
Linnea M. Avallone ◽  
William Engblom

Abstract The University of Colorado closed-path tunable diode laser hygrometer (CLH), a new instrument for the in situ measurement of enhanced total water (eTW, the sum of water vapor and condensed water enhanced by a subisokinetic inlet), has recently been flown aboard the NASA DC-8 and WB-57F aircrafts. The CLH has the sensitivity necessary to quantify the ice water content (IWC) of extremely thin subvisual cirrus clouds (∼0.1 mg m−3), while still providing measurements over a large range of conditions typical of upper-tropospheric cirrus (up to 1 g m−3). A key feature of the CLH is its subisokinetic inlet system, which is described in detail in this paper. The enhancement and evaporation of ice particles that results from the heated subisokinetic inlet is described both analytically and based on computational fluid dynamical simulations of the flow around the aircraft. Laboratory mixtures of water vapor with an accuracy of 2%–10% (2σ) were used to calibrate the CLH over a wide range of water vapor mixing ratios (∼50–50 000 ppm) and pressures (∼100–1000 mb). The water vapor retrieval algorithm, which is based on the CLH instrument properties as well as on the spectroscopic properties of the water absorption line, accurately fits the calibration data to within the uncertainty of the calibration mixtures and instrument signal-to-noise ratio. A method for calculating cirrus IWC from the CLH enhanced total water measurement is presented. In this method, the particle enhancement factor is determined from an independent particle size distribution measurement and the size-dependent CLH inlet efficiency. It is shown that despite the potentially large uncertainty in particle size measurements, the error introduced by this method adds ∼5% error to the IWC calculation. IWC accuracy ranges from 20% at the largest IWC to 50% at small IWC (<5 mg m−3).


2015 ◽  
Vol 8 (1) ◽  
pp. 211-224 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10−6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%.


2014 ◽  
Vol 7 (8) ◽  
pp. 8271-8309 ◽  
Author(s):  
T. D. Thornberry ◽  
A. W. Rollins ◽  
R. S. Gao ◽  
L. A. Watts ◽  
S. J. Ciciora ◽  
...  

Abstract. The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of water vapor and enhanced total water (vapor + inertially enhanced condensed-phase) in the upper troposphere/lower stratosphere from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An on-board calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February–March 2013 on board the Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10−6 mol mol−1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33–48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023–0.013 ppm, corresponding to approximately 2 μg m−3, with an estimated overall uncertainty of 20%.


2013 ◽  
Vol 306 ◽  
pp. 99-105 ◽  
Author(s):  
Qun-xing Huang ◽  
Fei Wang ◽  
Hai-dan Zhang ◽  
Jian-hua Yan ◽  
Ming-jiang Ni ◽  
...  

2007 ◽  
Vol 96 (7) ◽  
pp. 1776-1793 ◽  
Author(s):  
Henning Gieseler ◽  
William J. Kessler ◽  
Michael Finson ◽  
Steven J. Davis ◽  
Phillip A. Mulhall ◽  
...  

2020 ◽  
pp. 103114
Author(s):  
Shruti Ghanekar ◽  
Rajavasanth Rajasegar ◽  
Nicholas Traina ◽  
Constandinos Mitsingas ◽  
Richard M. Kesler ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Miklós Szakáll ◽  
Árpád Mohácsi ◽  
Dávid Tátrai ◽  
Anna Szabó ◽  
Helga Huszár ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document