scholarly journals The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations

2016 ◽  
Vol 9 (1) ◽  
pp. 79-92 ◽  
Author(s):  
T. Ning ◽  
J. Wang ◽  
G. Elgered ◽  
G. Dick ◽  
J. Wickert ◽  
...  

Abstract. Within the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) there is a need for an assessment of the uncertainty in the integrated water vapour (IWV) in the atmosphere estimated from ground-based global navigation satellite system (GNSS) observations. All relevant error sources in GNSS-derived IWV are therefore essential to be investigated. We present two approaches, a statistical and a theoretical analysis, for the assessment of the uncertainty of the IWV. The method is valuable for all applications of GNSS IWV data in atmospheric research and weather forecast. It will be implemented to the GNSS IWV data stream for GRUAN in order to assign a specific uncertainty to each data point. In addition, specific recommendations are made to GRUAN on hardware, software, and data processing practices to minimise the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the zenith total delay (ZTD) dominate the error budget of the IWV, contributing over 75 % of the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the zenith wet delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques.

2015 ◽  
Vol 8 (8) ◽  
pp. 8817-8857 ◽  
Author(s):  
T. Ning ◽  
J. Wang ◽  
G. Elgered ◽  
G. Dick ◽  
J. Wickert ◽  
...  

Abstract. Within the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) there is a need for an assessment of the uncertainty in the Integrated Water Vapour (IWV) in the atmosphere estimated from ground-based GNSS observations. All relevant error sources in GNSS-derived IWV is therefore essential to be investigated. We present two approaches, a statistical and a theoretical analysis, for the assessment of the uncertainty of the IWV. It will be implemented to the GNSS IWV data stream for GRUAN in order to obtain a specific uncertainty for each data point. In addition, specific recommendations are made to GRUAN on hardware, software, and data processing practices to minimize the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the Zenith Total Delay (ZTD) dominate the error budget of the IWV contributing with over 75 % to the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the Zenith Wet Delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques, taking the uncertainty into account from diurnal to decadal time scales.


2020 ◽  
Author(s):  
Andreas Wagner ◽  
Benjamin Fersch ◽  
Peng Yuan ◽  
Harald Kunstmann

<p>The assimilation of observations in local area models (LAMs) assures that the states of meteorological variables are as close to reality as possible. Water vapor is an important constituent in terms of cloud and precipitation formation. Its highly variable nature in space and time is often insufficiently represented in models.</p><p>The aim of our work is to improve the simulation of water vapour in the Weather Research and Forecasting model WRF by assimilation of different observations. At the current stage, temperature, relative humidity, and surface pressure derived from climate stations are applied as well as zenith total delay (ZTD) data from global navigation satellite system (GNSS) stations. We try to identify the best setup of assimilation parameters which all of them directly or indirectly influence water vapour simulations. We will show case studies of high-resolution WRF simulations (2.1 km) between 2016 and 2018 for different seasons in southwest Germany. The impact of assimilation (3D-VAR) of different variables, combinations of variables, background error option as well as the temporal resolution of assimilation is evaluated. We look at column values and also at profiles derived from radiosondes. Our results show a positive impact when assimilating measured data, but deteriorations are also possible. A distinct influence of assimilation is only apparent for a few time steps. If the temporal resolution of the assimilated variables is too coarse and there is no assimilation close to these time steps, the positive effect vanishes.</p>


2014 ◽  
Vol 7 (2) ◽  
pp. 1075-1151 ◽  
Author(s):  
R. Van Malderen ◽  
H. Brenot ◽  
E. Pottiaux ◽  
S. Beirle ◽  
C. Hermans ◽  
...  

Abstract. Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. At one hand, networks of ground-based instruments allowing to retrieve homogeneous Integrated Water Vapour (IWV) datasets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ yr, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 yr (e.g. AIRS) or are being merged in order to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). The present study aims at setting up a techniques intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in-situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess the applicability of either dataset for water vapour trends analysis. To this end, we selected 28 sites worldwide at which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. We found that the mean biases of the different techniques w.r.t. the GPS estimates vary only between −0.3 to 0.5 mm of IWV, but the small bias is accompanied by large Root Mean Square (RMS) values, especially for the satellite instruments. In particular, we analysed the impact of the presence of clouds on the techniques IWV agreement. Also, the influence of specific issues for each instrument on the intercomparison is investigated, e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences, etc. Furthermore, we checked if the properties of the IWV scatter plots between these different instruments are dependent on the geography and/or altitude of the station. We could only detect a clear dependency of the RMS, for all considered instruments, on latitude or mean IWV: the RMS of the IWV observations w.r.t. the GPS IWV retrievals decreases with increasing latitude and decreasing mean IWV.


2014 ◽  
Vol 7 (8) ◽  
pp. 2487-2512 ◽  
Author(s):  
R. Van Malderen ◽  
H. Brenot ◽  
E. Pottiaux ◽  
S. Beirle ◽  
C. Hermans ◽  
...  

Abstract. Water vapour plays a dominant role in the climate change debate. However, observing water vapour over a climatological time period in a consistent and homogeneous manner is challenging. On one hand, networks of ground-based instruments able to retrieve homogeneous integrated water vapour (IWV) data sets are being set up. Typical examples are Global Navigation Satellite System (GNSS) observation networks such as the International GNSS Service (IGS), with continuous GPS (Global Positioning System) observations spanning over the last 15+ years, and the AErosol RObotic NETwork (AERONET), providing long-term observations performed with standardized and well-calibrated sun photometers. On the other hand, satellite-based measurements of IWV already have a time span of over 10 years (e.g. AIRS) or are being merged to create long-term time series (e.g. GOME, SCIAMACHY, and GOME-2). This study performs an intercomparison of IWV measurements from satellite devices (in the visible, GOME/SCIAMACHY/GOME-2, and in the thermal infrared, AIRS), in situ measurements (radiosondes) and ground-based instruments (GPS, sun photometer), to assess their use in water vapour trends analysis. To this end, we selected 28 sites world-wide for which GPS observations can directly be compared with coincident satellite IWV observations, together with sun photometer and/or radiosonde measurements. The mean biases of the different techniques compared to the GPS estimates vary only between −0.3 to 0.5 mm of IWV. Nevertheless these small biases are accompanied by large standard deviations (SD), especially for the satellite instruments. In particular, we analysed the impact of clouds on the IWV agreement. The influence of specific issues for each instrument on the intercomparison is also investigated (e.g. the distance between the satellite ground pixel centre and the co-located ground-based station, the satellite scan angle, daytime/nighttime differences). Furthermore, we checked if the properties of the IWV scatter plots between these different instruments are dependent on the geography and/or altitude of the station. For all considered instruments, the only dependency clearly detected is with latitude: the SD of the IWV observations with respect to the GPS IWV retrievals decreases with increasing latitude and decreasing mean IWV.


Author(s):  
T. A. Musa ◽  
M. H. Mazlan ◽  
Y. D. Opaluwa ◽  
I. A. Musliman ◽  
Z. M. Radzi

This paper presents the development of T<sub>M</sub> model by using the radiosonde stations from Peninsular Malaysia. Two types of T<sub>M</sub> model were developed; site-specific and regional models. The result revealed that the estimation from site-specific model has small improvement compared to the regional model, indicating that the regional model is adequately to use in estimation of GPS-derived IWV over Peninsular Malaysia. Meanwhile, this study found that the diurnal cycle of T<sub>S</sub> has influenced the T<sub>M</sub>&amp;ndash;T<sub>S</sub> relationship. The separation between daytime and nighttime observation can improve the relationship of T<sub>M</sub>&amp;ndash;T<sub>S</sub>. However, the impact of diurnal cycle to IWV estimation is less than 1&amp;thinsp;%. The T<sub>M</sub> model from Global and Tropic also been evaluated. The Tropic T<sub>M</sub> model is superior to be utilized as compared to the Global T<sub>M</sub> model.


MAUSAM ◽  
2021 ◽  
Vol 57 (2) ◽  
pp. 323-328
Author(s):  
R. K. GIRI ◽  
B. R. LOE ◽  
N. PUVIARSON ◽  
S. S. BHANDARI ◽  
R. K. SHARMA

Lkkj & ok;qeaMy esa ty ok"i dk forj.k LFkkfud :i ls vkSj dkfyd rkSj ij cgqr vf/kd ifjorZu’khy gksrk gSA ty ok"i dk forj.k vusdksa ok;qeaMyh; izfØ;kvksa esa izeq[k Hkwfedk fuHkkrk gSA dqy lekdfyr ty ok"i vFkok le:ih o"kkZ ty ok"i dk vkdyu Xykscy iksft’kfuax flLVe ¼th- ih- ,l-½ tsfuFk VksVy fMys ¼tsM- Vh- Mh-½ ds vk¡dM+ksa dh lgk;rk ls fd;k tk ldrk gSA blesa tsfuFk nzoLFkSfrd fMys ds eku dks funf’kZr fd;k x;k gS vkSj bls tsM- Vh- Mh- ls fudkyus ij tsfuFk vknzZ fMys ds vk¡dM+s izkIr gksaxsA vr% bl izdkj vkdfyr fd, x, tsM- MCY;w- Mh- ds eku ls izk;% yxkrkj ,e- ,e-  esa o"kkZ  ty ok"i dk irk pysxkA bl 'kks/k&i= esa th- ih- ,l- ds vk¡dM+ksa dk mi;ksx djrs gq, ubZ fnYyh ds fy, o"kZ 2003 ds 'khrdkyhu _rq vkSj Hkkjrh; foKku laLFkku ifj"kn] caxykSj ds dsanzksa ds fy, ,e- ,e- esa ih- MCY;w- oh- dk vkdyu djus dk iz;kl fd;k x;k gSA buls izkIr gq, ifj.kkeksa dk jsfM;kslkSUnsa vk¡dM+ksa ds lkFk lgh rkyesy ik;k x;k gSA The distribution of water vapour in atmosphere is highly spatial and temporal variable. It plays a key role in many atmospheric processes. The total integrated water vapour or equivalent precipitable water vapour (PWV) can be estimated with the help of Global Positioning System (GPS) Zenith Total Delay (ZTD) data. The value of Zenith Hydrostatic Delay (ZHD) is modeled and subtracting from ZTD will give Zenith wet delay (ZWD). Consequently, the estimated ZWD values will provide PWV in mm almost in a continuous manner. In this paper an attempt has been made for the estimation of PWV in mm during winter season 2003 for New Delhi and Indian Institute of Science (IISC), Bangalore stations using GPS data. The result shows fairly good agreement with the radio-sonde data. 


2020 ◽  
Vol 310 ◽  
pp. 00046
Author(s):  
Lenka Kabošová ◽  
Eva Kormaníková ◽  
Stanislav Kmeť ◽  
Dušan Katunský

Building skins are persistently exposed to changes in the weather, including the cases of weather extremes, increasing in frequency due to global climate change. As a consequence of the advancements of digital design tools, the integration of the weather conditions into the design process is much smoother. The impact of the ambient conditions on buildings and their structures can be digitally analyzed as early as in the conceptual design stage. These new design tools stimulate original ideas for shape-changing building skins, actively reacting to the dynamic weather conditions. In the paper, a digital design method is introduced, leading towards the design of a building skin, able of the passive shape adaptation when subjected to the wind. The designed building skin consists of a tensegrity structure where the tensioned elements are substituted by a tensile membrane, creating a self-equilibrated building skin element. In the previous research, a small prototype of this wind-adaptive element was created. The computer simulations are employed to predict the adaptive behavior of a bigger, full-scale building skin element. The before-mentioned building envelope becomes an active player in its surrounding environment, passively reacting to the wind in real-time, thanks to the geometric and material properties. Due to the local shape changes caused by the wind force, the wind can be perceived unconventionally through the adaptive building structure.


2013 ◽  
Vol 26 (3) ◽  
pp. 290-308 ◽  
Author(s):  
P. Ricaud ◽  
F. Carminati ◽  
Y. Courcoux ◽  
A. Pellegrini ◽  
J.-L. Attié ◽  
...  

AbstractThe Dome C (Concordia) station in Antarctica (75°06′S, 123°21′E, 3233 m above mean sea level) has a unique opportunity to test the quality of remote-sensing measurements and meteorological analyses because it is situated well inside the Eastern Antarctic Plateau and is less affected by local phenomena. Measurements of tropospheric temperature and water vapour (H2O) together with the integrated water vapour (IWV) performed in 2010 are statistically analysed to assess their quality and to study the yearly correlation between temperature and H2O over the entire troposphere. The statistical tools include yearly evolution, seasonally-averaged mean and bias, standard deviation and linear Pearson correlation. The datasets are made of measurements from the ground-based microwave radiometer H2O Antarctica Microwave Stratospheric and Tropospheric Radiometer (HAMSTRAD), radiosonde, in situ sensors, the space-borne infrared sensors Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A platform and the Atmospheric InfraRed Sounder (AIRS) on the Aqua platform, and the analyses from the European Centre for Medium-Range Weather Forecast (ECMWF). Despite some obvious biases within all these datasets, our study shows that temperature and IWV are generally measured with high quality whilst H2O measurement quality is slightly worse. The AIRS and IASI measurements do not have the vertical resolution to correctly probe the lowermost troposphere, whilst HAMSTRAD loses sensitivity in the upper troposphere-lower stratosphere. Within the entire troposphere over the whole year, it is found that the time evolution of temperature and H2O is highly correlated (> 0.8). This suggests that, in addition to the variability of solar radiation producing an obvious diurnal cycle in the planetary boundary layer in summer and an obvious seasonal cycle over the year, the H2O and temperature intra-seasonal variabilities are affected by the same processes, e.g. related to the long-range transport of air masses.


2021 ◽  
Vol 13 (18) ◽  
pp. 10254
Author(s):  
Anton Galich ◽  
Simon Nieland ◽  
Barbara Lenz ◽  
Jan Blechschmidt

Bicycle usage is significantly affected by weather conditions. Climate change is, therefore, expected to have an impact on the volume of bicycle traffic, which is an important factor in the planning and design of bicycle infrastructures. To predict bicycle traffic in a changed climate in the city of Berlin, this paper compares a traditional statistical approach to three machine learning models. For this purpose, a cross-validation procedure is developed that evaluates model performance on the basis of prediction accuracy. XGBoost showed the best performance and is used for the prediction of bicycle counts. Our results indicate that we can expect an overall annual increase in bicycle traffic of 1–4% in the city of Berlin due to the changes in local weather conditions caused by global climate change. The biggest changes are expected to occur in the winter season with increases of 11–14% due to rising temperatures and only slight increases in precipitation.


2020 ◽  
Vol 35 (1) ◽  
pp. 51-66 ◽  
Author(s):  
L. Cucurull ◽  
M. J. Mueller

Abstract Observing system simulation experiments (OSSEs) were conducted to evaluate the potential impact of the six Global Navigation Satellite System (GNSS) radio occultation (RO) receiver satellites in equatorial orbit from the initially proposed Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, known as COSMIC-2A. Furthermore, the added value of the high-inclination component of the proposed mission was investigated by considering a few alternative architecture designs, including the originally proposed polar constellation of six satellites (COSMIC-2B), a constellation with a reduced number of RO receiving satellites, and a constellation of six satellites but with fewer observations in the lower troposphere. The 2015 year version of the operational three-dimensional ensemble–variational data assimilation system of the National Centers for Environment Prediction (NCEP) was used to run the OSSEs. Observations were simulated and assimilated using the same methodology and their errors assumed uncorrelated. The largest benefit from the assimilation of COSMIC-2A, with denser equatorial coverage, was to improve tropical winds, and its impact was found to be overall neutral in the extratropics. When soundings from the high-inclination orbit were assimilated in addition to COSMIC-2A, positive benefits were found globally, confirming that a high-inclination orbit constellation of RO receiving satellites is necessary to improve weather forecast skill globally. The largest impact from reducing COSMIC-2B from six to four satellites was to slightly degrade weather forecast skill in the Northern Hemisphere extratropics. The impact of degrading COSMIC-2B to the COSMIC level of accuracy, in terms of penetration into the lower troposphere, was mostly neutral.


Sign in / Sign up

Export Citation Format

Share Document